首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   11篇
  国内免费   18篇
化学   91篇
晶体学   5篇
力学   2篇
数学   2篇
物理学   28篇
  2022年   2篇
  2021年   6篇
  2020年   3篇
  2019年   1篇
  2017年   6篇
  2016年   3篇
  2015年   8篇
  2014年   6篇
  2013年   11篇
  2012年   4篇
  2011年   5篇
  2010年   4篇
  2009年   2篇
  2008年   8篇
  2007年   10篇
  2006年   3篇
  2005年   4篇
  2004年   9篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   6篇
  1997年   4篇
  1996年   2篇
  1993年   2篇
  1991年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有128条查询结果,搜索用时 46 毫秒
1.
XRD and XPS are used to study the dispersion state of CuO on ceria surface. The dispersion capacity values of CuO measured by the two methods are consistent, which are of 1.20 mmol CuO/100 m2 CeO2. In addition, the results reveal that highly dispersed Cu2+ ions are formed at low CuO loadings and that increasing the CuO content to a value higher than its dispersion capacity produces crystalline CuO after the surface vacant sites on CeO2 are filled. The atomic composition of the outermost layer of the CuO/CeO2 samples has been probed by using static secondary ion mass spectroscopy (SSIMS), and the ratim of Cu/Ce are found to be 0.93 and 0.46 for the 1.22 and 0.61 mmol CuO/CeO2 samples respectively. Temperature-programmed reduction (TPR) profile with two reduction peaks at 156 and 165°C suggests that the reduction of highly dispersed Cu2+ ions consists of two steps and is easier than that of CuO crystallites, in which the TPR profile has only one reduction peak at about 249°C. The above experimental results are in good agreement with the prediction of the incorporation model. Project supported by the National Natural Science Foundation of China.  相似文献   
2.
Comparative study of the regularities of the reaction and specific features of phase formation during electrochemical incorporation of lithium from propylene carbonate solutions in intermetallic aluminum-based compounds (CuAl2, Mg2Al3, and NiAl) and pure metals (Al, Cu, Mg, and Ni) was performed. The initial stage of the process was shown to be dissolution of lithium in the solid phase limited by diffusion for all studied substrates. Trace amounts of lithium-containing by-products, were detected in NiAl, Ni, and Cu samples. The subsequent change in the limiting stage is related to the beginning of formation of a new phase: metallic lithium (on Mg2Al3, NiAl, Mg, Ni, and Cu) or LiAl (on Al and CuAl2 cathodes). In the latter case, the solid-phase substitution occurs, which is formally described by the equation: CuAl2+2Li++2e→2LiAl+Cu. Thus, the specific features of phase formation on the CuAl2 electrode correspond to the highest (among three intermetallides studied) concentration of Al atoms in the crystal lattice of the compound. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8. pp. 1525–1530, August, 1998.  相似文献   
3.
利用溶剂热法合成了不同锂含量的MOF-5(xLi-MOF-5, x=0, 1, 3, 5).在MOF-5结晶过程中,锂离子被合并入其骨架结构中.实验表明,合并入骨架的锂能够改变MOF-5的结构和表面化学性质.不同的xLi-MOF-5能够不同程度降低骨架相互穿插的程度从而导致其吸附分离能力的大幅改变.其中,3Li-MOF-5具有最高的二氧化碳捕获能力(5.47 mmol·g-1),对40% CO2/60% CH4混合气体具有最优吸附选择性.  相似文献   
4.
Surface‐diffusion‐induced spontaneous Ga incorporation process is demonstrated in ZnO nanowires grown on GaN substrate. Crucially, contrasting distributions of Ga atoms in axial and radial directions are experimentally observed. Ga atoms uniformly distribute along the ~10 μm long ZnO nanowire and show a rapidly gradient distribution in the radial direction, which is attributed substantially to the difference between surface and volume diffusion. The understanding on the incorporation process can potentially modulate doping and properties in semiconductor nanomaterials.

  相似文献   

5.
The incorporation of oxygen atoms in oxide films grown by pulsed laser deposition depends upon the oxygen pressure and laser power density. By carefully controlling these two parameters it is possible to control the oxygen deficiency in the samples, and thus to change their physical properties from insulating and transparent to absorbing and conducting. By using X-ray diffraction, Rutherford backscattering spectroscopy and resistivity measurements, we show that depending upon the oxide materials oxygen deficiency in the films can induce either the growth of stable sub-oxide phases or the formation of nanocomposite films by phase separation. The first case corresponds to oxides with a mixed valency cation like Ti, which leads to the formation of stable, crystalline and highly conductive TiOx sub-oxide phases. The second case is well described by the indium tin oxides (ITO) in which a large oxygen deficiency leads to metallic clusters embedded into a stoichiometric matrix, i.e. nanocomposite films. This phenomenon is due to the fact that sub-oxides of these compounds are not stable and thus the oxygen deficiency induced a phase separation.  相似文献   
6.
Phosphorus spin-lattice relaxation was studied in aluminophosphate molecular sieves containing various concentrations of either framework or non-framework cobalt. The behaviour of nuclear magnetisation in the presence of these paramagnetic centres was described successfully in the limit of no spin-diffusion. The diffusionless regime was strongly indicated with non-exponential magnetisation recovery and was therefore easy to recognise. According to the model, spin-lattice relaxation rates depend on the square of cobalt concentration. Measured relaxation rates agreed well with calculations if effective cobalt concentration was considered rather than the average one. The latter was obtained by bulk elemental analysis, while the former was extracted from cobalt concentration depth-profiles measured with Auger electron spectroscopy. These measurements indicated that in impregnated samples containing non-framework cobalt there could be much more cobalt near the crystal surface than within the crystal. Because high cobalt concentration can lead to an invisible phosphorus, only nuclei deep within the crystal contribute to the NMR signal. In such a case, the effective concentration is simply the concentration of cobalt far from the crystal surface. In our case, two impregnated samples with different bulk cobalt concentrations exhibited equal relaxation rates. Previously, such a case was misinterpreted as a case, in which nuclear spin-lattice relaxation was independent of cobalt concentration. AES measurements, however, revealed, that although average concentrations of the two samples were different by a factor of two, their effective concentrations were equal and thus in complete agreement with observed relaxation rates.  相似文献   
7.
Aluminium was anodised in H2SO4, LiHSO4, NaHSO4, KHSO4, Mg(HSO4)2 and Al(HSO4)3 electrolytes. The kinetics of growth of porous anodic alumina films and of the pore wall oxide dissolution during anodisation was studied. Based on the derived kinetic parameters, suitable physicochemical processes in the barrier layer electrolyte interface controlling the anion incorporation in the barrier layer were suggested and relevant models were formulated. According to these processes Al3+ and H+ ions are rejected from the pore base surface in the attached double layer, where Al3+ ions are solvated, and are transferred to the pore filling solution. The strongly different mobilities of Al3+ and H+ and the necessary space negative charge density distribution in the double layer result in similar concentration distributions of Al3+ and anions inside it, which differ strongly from that of H+. These Al3+ and anion concentrations increase with decreasing mobility of the main cations in the solution which depends on their hydration enthalpy and transport mechanism. The concentration of incorporated anions inside both a thin surface layer of the barrier layer and the double layer vary similarly. For identical surface density and base diameter of pores the decrease of the above mobility reinforces anion incorporation.  相似文献   
8.
The covalent immobilization of peptides, proteins, and other biomolecules to hydrogels provides a biologically mimicking environment for cell and tissue growth. Bioorthogonal chemical reactions can serve as a tool for this, but the paucity of such reactions and mutual incompatibilities limits the number of distinct molecules that can be introduced. We now report that the potassium acyltrifluoroborate (KAT ) amide‐forming ligation is orthogonal to both thiol‐Michael and strain promoted azide alkyne cycloadditions (SPAAC ) and the requisite functional groups – KAT s and hydroxylamines – are stable and compatible to hydrogel formation, protein modification, and post‐assembly immobilization of biomolecules onto hydrogels. In combination these ligations enables stepwise covalent protein immobilization of multiple BSA ‐derivatives onto the hydrogel scaffold regardless of the order of addition.  相似文献   
9.
Incorporation of deoxynucleotide analogues into DNA is important for the expansion of DNA functions. Primer extension reactions are commonly used for the assay of such reaction events. However, current assay protocols generally rely on radiolabeling, fluorescence reporter labeling, or removal of specific deoxynucleotide triphosphate in the reaction mixture. Herein we report on the design of two novel assay protocols that utilize a dideoxynucleotide‐terminated template strand and a phosphorothiolate‐modified deoxynucleotide‐terminated template strand. We designed and synthesized a deoxyuridine triphosphate analogue (dU*TP) containing 2‐bromoisobutyryl group and demonstrated that it could be well recognized by ?29DNA polymerase, E. coli DNA polymerase I Klenow Fragment, Bst DNA polymerase Large Fragment, and E. coli DNA polymerase I Klenow Fragment (exo(), which translated to effective incorporation of dU*TP into DNA. dU*TP was also successfully incorporated into extremely long single‐stranded DNA at high‐density using ?29 DNA polymerase by rolling circle amplification.  相似文献   
10.
利用溶剂热法合成了不同锂含量的MOF-5(x Li-MOF-5,x=0,1,3,5)。在MOF-5结晶过程中,锂离子被合并入其骨架结构中。实验表明,合并入骨架的锂能够改变MOF-5的结构和表面化学性质。不同的x Li-MOF-5能够不同程度降低骨架相互穿插的程度从而导致其吸附分离能力的大幅改变。其中,3Li-MOF-5具有最高的二氧化碳捕获能力(5.47 mmol·g-1),对40%CO2/60%CH4混合气体具有最优吸附选择性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号