首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   2篇
  国内免费   29篇
化学   106篇
晶体学   2篇
力学   1篇
综合类   2篇
物理学   1篇
  2021年   1篇
  2020年   2篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   7篇
  2012年   3篇
  2011年   6篇
  2010年   5篇
  2009年   8篇
  2008年   7篇
  2007年   9篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  2000年   5篇
  1999年   3篇
  1998年   6篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有112条查询结果,搜索用时 359 毫秒
1.
Hollow particles with interconnected cavities have been prepared by a simple modified suspension polymerization of acrylate monomers in the incorporation of a phase inversion process and polymerizable emulsifier. The morphology of particles has been characterized by scanning electron micrographs (SEMs). Based on observations made using an optical microscope equipped with a digital camera and SEM images of particles obtained under different conditions, the formation mechanisms for multiporous hollow particles are discussed.  相似文献   
2.
The aim of this research work was to clarify the role of the mixed emulsifier in the structure formation and water binding mode in the case of o/w creams prepared with different surfactants. The swelling behavior of mixed emulsifiers was examined by means of direct investigation methods such as transmission electron microscopy (TEM) and X-ray diffraction. The detailed structure image of the creams was created with the help of the latter. The influence of the structure of the hydrophilic gel phase, and the structural changes during storage were studied with rheological methods. On the basis of the results, it can be stated that the investigated creams had different structures from those mentioned in the literature: surfactant did not create a mixed bilayer with the structure to furnish fatty amphiphile; instead, micelles were formed. These results correlated well with the results of the rheological tests.  相似文献   
3.
采用反应性乳化剂SE-10N,通过正交实验及单因素实验确定了以苯乙烯、甲基丙烯酸甲酯、丙烯酸丁酯、丙烯酸和丙烯腈为单体的五元无皂苯丙共聚乳液的组成及聚合工艺。所制得的无皂乳液稳定,其乳胶粒大小均匀,粒径为50~60nm,比同组成的有皂乳液乳胶粒的粒径稍小。乳液涂膜透明、硬度达H级;其硬度、耐水性及钙离子稳定性均较同组成有皂乳液的好。  相似文献   
4.
The influence of nonionic emulsifier, included inside styrene-methacrylic acid copolymer [P(S-MAA)] particles during emulsion copolymerization, on the formation of multihollow structure inside the particles via the alkali/cooling method (proposed by the authors) was examined in comparison to emulsifier-free particles. It was clarified that the nonionic emulsifier included inside the P(S-MAA) particles eased the formation of multihollow structure.Part CCL of the series studies on suspension and emulsion  相似文献   
5.
The principal subject discussed in the current paper is the radical polymerization in the aqueous emulsions of unsaturated monomers (styrene, alkyl (meth)acrylates, etc.) stabilized by non-ionic and ionic/non-ionic emulsifiers. The sterically and electrosterically stabilized emulsion polymerization is a classical method which allows to prepare polymer lattices with large particles and a narrow particle size distribution. In spite of the similarities between electrostatically and sterically stabilized emulsion polymerizations, there are large differences in the polymerization rate, particle size and nucleation mode due to varying solubility of emulsifiers in oil and water phases, micelle sizes and thickness of the interfacial layer at the particle surface. The well-known Smith-Ewart theory mostly applicable for ionic emulsifier, predicts that the number of particles nucleated is proportional to the concentration of emulsifier up to 0.6. The thin interfacial layer at the particle surface, the large surface area of relatively small polymer particles and high stability of small particles lead to rapid polymerization. In the sterically stabilized emulsion polymerization the reaction order is significantly above 0.6. This was ascribed to limited flocculation of polymer particles at low concentration of emulsifier, due to preferential location of emulsifier in the monomer phase. Polymerization in the large particles deviates from the zero-one approach but the pseudo-bulk kinetics can be operative. The thick interfacial layer can act as a barrier for entering radicals due to which the radical entry efficiency and also the rate of polymerization are depressed. The high oil-solubility of non-ionic emulsifier decreases the initial micellar amount of emulsifier available for particle nucleation, which induces non-stationary state polymerization. The continuous release of emulsifier from the monomer phase and dismantling of the non-micellar aggregates maintained a high level of free emulsifier for additional nucleation. In the mixed ionic/non-ionic emulsifiers, the released non-ionic emulsifier can displace the ionic emulsifier at the particle surface, which then takes part in additional nucleation. The non-stationary state polymerization can be induced by the addition of a small amount of ionic emulsifier or the incorporation of ionic groups onto the particle surface. Considering the ionic sites as no-adsorption sites, the equilibrium adsorption layer can be thought of as consisting of a uniform coverage with holes. The de-organization of the interfacial layer can be increased by interparticle interaction via extended PEO chains--a bridging flocculation mechanism. The low overall activation energy for the sterically stabilized emulsion polymerization resulted from a decreased barrier for entering radicals at high temperature and increased particle flocculation.  相似文献   
6.
A series of novel silicone modified polyurethane (Si-PU) surfactants were successfully synthesized by using hydroxypropyl-terminated polydimethylsiloxane (HPMS), polyethylene glycol (PEG), dimethylolpropionic acid (DMPA) and isophoronediisocyanate (IPDI). The chemical structure of the surfactant was confirmed by FTIR and 1H-NMR. TEM photographs showed that the micelles of the Si-PU surfactants dispersed in aqueous solution were spherical with the particle size in the range of 100–400 nm. Surface tension measurements indicated that these surfactants had low surface tension to 29.9 mN·m?1and a definite critical micelle concentration to, approximately 5.0×10?4–7.5×10?4mol·L?1. When the content of HPMS was 20 wt%, the surfactant's, emulsifying performance was superior to the traditionally available Span80/Tween80 mixed emulsifiers. In addition to that, no phase transition temperature was detected from 20°C to 90°C by fluorescence probe and DSC measurements, confirming the high thermal stability of the micelles.  相似文献   
7.
The poly(methyl methacrylate/butyl acrylate/acrylic acid) [P(MMA/BA/AA)] and poly (styrene/butyl acrylate/acrylic acid) [P(St/BA/AA)] latexes were synthesized using the emulsifier octylphenol polyoxyethylene(10) ether (OP-10) and ammonium sulfate allyloxy nonylphenoxy poly(ethyleneoxy)(10) ether(DNS-86). The optimum amount of OP-10 and DNS-86 was 1.5% and 2.5% respectively. The P(MMA/BA/AA) and P(St/BA/AA) latex containing 1.5% OP-10 or 2.5% DNS-86 were blended pairwise. The performances of latex blends and parent latexes as a function of emulsifiers content in parent latexes were determined. The results indicated that the stability of latex blends is favorable, and particle size distribution was more uniform and thermal stability was improved after blending.  相似文献   
8.
Blocked copolymer of acrylic acid-methyl methacrylate with controlled molecular architecture were prepared by reversible addition chain fragmentation polymerization and were characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H NMR), and gel permeation chromatography (GPC) for structural evaluation. The neutralized copolymers were evaluated for the critical micelle concentration (CMC), hydrophilic lipophilic balance (HLB) and were utilized as polymeric emulsifier cum macro RAFT initiator for the synthesis of acrylic binder. The structure properties of the emulsifier were evaluated correlating with the film properties.  相似文献   
9.
Formulation optimization of emulsifiers for preparing multiple emulsions was performed in respect of stability by using artificial neural network (ANN) technique. Stability of multiple emulsions was expressed by the percentage of reserved emulsion volume of freshly prepared sample after centrifugation. Individual properties of multiple emulsions such as droplet size, δ, viscosity of the primary and the multiple emulsions were also considered. A back‐propagation (BP) network was well trained with experimental data pairs and then used as an interpolating function to estimate the stability of emulsions of different formulations. It is found that using mixtures of Span 80 and Tween 80 with different mass ratio as both lipophilic and hydrophilic emulsifiers, multiple W/O/W emulsions can be prepared and the stability is sensitive to the mixed HLB numbers and concentration of the emulsifiers. By feeding ANN with 39 pairs of experimental data, the ANN is well trained and can predict the influences of several formulation variables to the immediate emulsions stability. The validation examination indicated that the immediate stability of the emulsions predicted by the ANN is in good agreement with measured values. ANN therefore could be a powerful tool for rapid screening emulsifier formulation. However, the long‐term stability of the emulsions is not good, possibly due to the variation of the HLB number of the mixed monolayers by diffusion of emulsifier molecules, but can be greatly improved by using a polymer surfactant Arlacel P135 to replace the lipophilic emulsifier.  相似文献   
10.
Cinnamoyl Pluronic F127 (CP F127) was prepared by reacting cinnamoyl chloride and Pluronic F127. On the 1H NMR spectrum of CP F127, 1.2 moiety of cinnamoyl group was found to be attached to one molecule of CP F127. Using pyrene as a fluorescence probe, it was found that not only Pluronic F127 but also CP F127 could be readily assembled into micelles, and the critical micelle concentration was around 0.015 mg/ml and 0.03 mg/ml, respectively. Pluronic F127 in aqueous solution (2% w/v) could form no particles in 10–20°C, but particles (ca. 30 nm in diameter) were detected on a dynamic light scattering machine in 25–40°C possibly due to the thermal micellization. However, CP F127 was assembled into particles (ca. 230 nm) even in the lower temperature range, possibly because of the intermolecular hydrophobic interaction of the cinnamoyl group. The particle size of CP F127 strongly depended on the medium temperature and UV irradiation time. CP F127 was a good emulsifier for the preparation of O/W emulsions. The oil droplet size markedly increased upon UV irradiation (254 nm, 6 W), possibly because of the photo-dimerization of cinnamoyl group, but it was little affected by the temperature change (10–40°C).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号