首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
化学   14篇
物理学   3篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2011年   2篇
  2009年   1篇
  2008年   5篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
There has been a growing interest in the utilization of sisal fibres as reinforcement in the production of polymeric composite materials. Natural fibres have gained recognition as reinforcements in fibre polymer–matrix composites because of their mechanical properties and environmental friendliness. The mechanical properties of sisal fibre-reinforced polymer composites have been studied by many researchers and a few of them are discussed in this article. Various fibre treatments, which are carried out in order to improve adhesion, leading to improved mechanical properties, are also discussed in this review paper. This review also focuses on the influence of fibre content and fabrication methods, which can significantly affect the mechanical properties of sisal fibre-reinforced polymer composites.  相似文献   
2.
Extraction of cellulose and preparation of nanocellulose from sisal fibers   总被引:3,自引:0,他引:3  
In this work a study on the feasibility of extracting cellulose from sisal fiber, by means of two different procedures was carried out. These processes included usual chemical procedures such as acid hydrolysis, chlorination, alkaline extraction, and bleaching. The final products were characterized by means of Thermogravimetric Analysis (TGA), Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and Scanning Electronic Microscopy (SEM). The extraction procedures that were used led to purified cellulose. Advantages and disadvantages of both procedures were also analyzed. Finally, nanocellulose was produced by the acid hydrolysis of obtained cellulose and characterized by Atomic Force Microscopy (AFM).  相似文献   
3.
Pretreatments (water-soaking, pre-mercerization, mercerization under a pressure of 15 bars and steam explosion) were used to improve the accessibilities and reactivities of celluloses of bleached flax, hemp, sisal, abaca and jute pulps for the synthesis of methylcellulose. Degrees of crystallinity were determined by X-ray Diffraction (XRD) spectra. The iodine adsorption accessibilities of pulps were low and accessible fractions ranged from 1.3 to 5.2%. Accessible fractions in amorphous cellulose were calculated in the 5–18% range. The accessibilities of these pulps were hemp pulp > flax pulp > sisal pulp > jute pulp > abaca pulp. Fourier Transform Infrared (FTIR) spectra showed that mean hydrogen bond strengths were weakened and relative crystallinity indexes were decreased by pretreatments. The accessibility and reactivity of the abaca pulp were improved by water soaking, mercerization under 15 bars pressure, steam explosion and preliminary mercerization, of which steam explosion and pre-mercerization were the best treatments. Species was the main factor for the accessibility and reactivity.  相似文献   
4.
Admicellar polymerization was used to modify a sisal fiber surface with poly(methyl methacrylate) (PMMA) in order to improve the compatibility between the sisal fiber and the surrounding polymeric matrix in a composite. The effect of the amount of monomer (methyl methacrylate) and initiator (sodium persulfate) on the hydrophobicity behavior and PMMA film formation of the admicellar-treated sisal surface was studied. The increase in the hydrophobicity of the admicellar-treated sisal fiber was examined by flotation testing, moisture absorption, and electrostatic charge or zeta (ζ) potential. The amount of PMMA film formed on the sisal surface was investigated by the weight loss of the admicellar-treated sisal extracted by acetone and chloroform; and the thermal degradation was studied by thermogravimetric analyses. The admicellar-treated sisal could float on the surface of water for longer than half an hour, and its moisture absorption decreased. The ζ potential of its surface also showed a significant change compared to the untreated sisal. The results from the weight loss indicated that the amount of PMMA formed on the sisal fiber surface depended on the amount of monomer and initiator. The Fourier transform infrared spectrum of the admicellar-treated sisal showed the characteristic peaks of PMMA and the scanning electron micrograph of the treated sisal was clearly different from the untreated sisal, confirming that there was a thin film coating on the admicellar-treated sisal fiber.  相似文献   
5.
A composite laminate based on natural sisal fibre and polypropylene was prepared by compression moulding. The mechanical properties of the composite were assessed under tensile, flexural and impact loading. Changes in the stress-strain characteristics, yield stress, tensile strength, and tensile (Young's) modulus, due to ageing have been analysed. Important findings with the fresh and aged fibres and their behaviour in composites have been reported and analysed.  相似文献   
6.
This paper explores the production of carboxymethylcellulose (CMC) fromseveral bleached cellulose pulps obtained from non-wood species. The chemicalcomposition (-cellulose, hemicellulose and lignin content), the degreeofswelling, viscosity, solubility in concentrated NaOH and crystallinity ofsoda/AQ cellulose pulps from abaca, jute, sisal, linen and Miscanthussinensis were determined. The pulps were carboxymethylated by one andtwo successive reaction steps in aqueous medium under identical conditions. Thedegree of substitution (DS) of CMC was found to be dependent upon the source ofthe cellulose pulp, but generally it was close to 1 with one etherificationtreatment and around 2 after the second. The molar mass of CMC was found to bedependent on the initial intrinsic viscosity of the cellulose pulp. The weightaverage molar mass of our CMCs ranged from 1.5×105 to2.8×105. Increasing the DS up to 2 improved the CMC solubility, butviscosity slightly decreased due to a slight degradation of the polymer.  相似文献   
7.
A facile approach was utilized to introduce starch nanocrystals (SNCs) onto sisal fiber (SF) to improve the interfacial adhesion between SF and starch. For this, fibers were treated with alkali and then subjected to cold plasma treatment to increase the accessibility with SNCs, which was confirmed through X-ray photoelectron spectroscopy (XPS). It was found that due to the influence of cold plasma treatment, new functional groups were introduced onto SF. The surface characteristics of SF were examined by Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The observed results suggested that SNCs were successfully distributed onto SF. Tensile strength and interfacial shear strength of fibers treated under different conditions were calculated and compared through a two-parameter Weibull model. The highest interfacial shear strength of 3.05 MPa was obtained by Alkali-300 W-SNCs, which indicated an increase of 80.6% than untreated SF. It has also been proved that the starch nanocrystals produced hydrogen bonding and physical interlocking between sisal fiber and starch. Notably, the outcome of this investigation indicates that SNCs may be applied for the fabrication of high performance, environmentally friendly sisal/starch composites for a range of technological applications.  相似文献   
8.
Sisal fibers have been chemically modified by reaction with lignins, extracted from sugarcane bagasse and Pinus-type wood and then hydroxymethylated, to increase adhesion in resol-type phenolic thermoset matrices. Inverse gas chromatography (IGC) results showed that acidic sites predominate for unmodified/modified sisal fibers and for phenolic thermoset, indicating that the phenolic matrix has properties that favor the interaction with sisal fibers. The IGC results also showed that the phenolic thermoset has a dispersive component closer to those of the modified fibers suggesting that thermoset interactions with the less polar modified fibers are favored. Surface SEM images of the modified fibers showed that the fiber bundle deaggregation increased after the treatment, making the interfibrillar structure less dense in comparison with that of unmodified fibers, which increased the contact area and encouraged microbial biodegradation in simulated soil. Water diffusion was observed to be faster for composites reinforced with modified fibers, since the phenolic resin penetrated better into modified fibers, thereby blocking water passage through their channels. Overall, composites' properties showed that modified fibers promote a significant reduction in the hydrophilic character, and consequently of the reinforced composite without a major effect on impact strength and with increased storage modulus.  相似文献   
9.
Two types of Sisal cellulose were studied as starting material for homogeneous acylation in the solvent dimethyl sulfoxide (DMSO)/tetrabutylammonium fluoride trihydrate (TBAF). The native Sisal cellulose investigated contains 14% hemicellulose (mainly composed of xylose) as confirmed by 13C-NMR spectroscopy in DMSO-d6/TBAF and HPLC analysis after complete polymer degradation. Alkali treatment of Sisal cellulose decreases the amount of hemicellulose, the degree of polymerization and the crystallinity. Both Sisal cellulose samples can be dissolved in DMSO/TBAF after treatment at elevated temperature. GPC measurements showed high aggregation in the solution. Different homogeneous acylation reactions using carboxylic acid anhydrides and vinyl esters were carried out, showing a pronounced tendency of the anhydride towards hydrolysis in the solvent. This disadvantage can be diminished by decreasing the amount of the salt hydrate (TBAF trihydrate) or by a distillative removal of the majority of water. A strong interaction of the polymer with the water in the solvent was observed.  相似文献   
10.
Grafting of poly(ethyl acrylate) and its copolymers was carried out on peroxide-treated sisal fibers. Effect of reaction conditions on graft parameters like rate of graft copolymerization and % grafting were studied. The kinetics of graft copolymerization of ethyl acrylate onto peroxide-treated sisal fibers was studied, and the rate expression for the graft copolymerization was found to be Rg = k[EA]1.74[FAS]0.51. Grafting of poly(EA) and copolymers onto peroxide-treated sisal fibers was confirmed by FT-IR spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction studies. Thermal stability and percentage crystallinity of sisal fibers were enhanced with peroxide treatment and graft copolymerization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号