首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23846篇
  免费   3021篇
  国内免费   1533篇
化学   17792篇
晶体学   357篇
力学   227篇
综合类   68篇
数学   628篇
物理学   9328篇
  2024年   39篇
  2023年   305篇
  2022年   444篇
  2021年   721篇
  2020年   1016篇
  2019年   899篇
  2018年   702篇
  2017年   621篇
  2016年   1284篇
  2015年   1246篇
  2014年   1263篇
  2013年   1798篇
  2012年   1338篇
  2011年   1624篇
  2010年   1292篇
  2009年   1506篇
  2008年   1505篇
  2007年   1624篇
  2006年   1560篇
  2005年   1154篇
  2004年   1076篇
  2003年   973篇
  2002年   627篇
  2001年   548篇
  2000年   503篇
  1999年   447篇
  1998年   437篇
  1997年   305篇
  1996年   282篇
  1995年   204篇
  1994年   185篇
  1993年   120篇
  1992年   140篇
  1991年   91篇
  1990年   74篇
  1989年   65篇
  1988年   58篇
  1987年   49篇
  1986年   56篇
  1985年   43篇
  1984年   28篇
  1983年   15篇
  1982年   18篇
  1981年   19篇
  1980年   19篇
  1979年   10篇
  1978年   16篇
  1977年   15篇
  1976年   11篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Employing radical bridges between anisotropic metal ions has been a viable route to achieve high-performance single-molecule magnets (SMMs). While the bridges have been mainly considered for their ability to promote exchange interactions, the crystal-field effect arising from them has not been taken into account explicitly. This lack of consideration may distort the understanding and limit the development of the entire family. To shed light on this aspect, herein we report a theoretical investigation of a series of N -radical-bridged diterbium complexes. It is found that while promoting strong exchange coupling between the terbium ions, the N -radical induces a crystal field that interferes destructively with that of the outer ligands, and thus reduces the overall SMM behavior. Based on the theoretical results, we conclude that the SMM behavior in this series could be further maximized if the crystal field of the outer ligands is designed to be collinear with that of the radical bridge. This conclusion can be generalized to all exchange-coupled SMMs.  相似文献   
2.
Nitrene transfer reactions have emerged as one of the most powerful and versatile ways to insert an amine function to various kinds of hydrocarbon substrates. However, the mechanisms of nitrene generation have not been studied in depth albeit their formation is taken for granted in most cases without definitive evidence of their occurrence. In the present work, we compare the generation of tosylimido iron species and NTs transfer from FeII and FeIII precursors where the metal is embedded in a tetracarbene macrocycle. Catalytic nitrene transfer to reference substrates (thioanisole, styrene, ethylbenzene and cyclohexane) revealed that the same active species was at play, irrespective of the ferrous versus ferric nature of the precursor. Through combination of spectroscopic (UV-visible, Mössbauer), ESI-MS and DFT studies, an FeIV tosylimido species was identified as the catalytically active species and was characterized spectroscopically and computationally. Whereas its formation from the FeII precursor was expected by a two-electron oxidative addition, its formation from an FeIII precursor was unprecedented. Thanks to a combination of spectroscopic (UV-visible, EPR, Hyscore and Mössbauer), ESI-MS and DFT studies, we found that, when starting from the FeIII precursor, an FeIII tosyliodinane adduct was formed and decomposed into an FeV tosylimido species which generated the catalytically active FeIV tosylimide through a comproportionation process with the FeIII precursor.  相似文献   
3.
Wacker oxidation is an industry-adopted process to transform olefins into value-added epoxides and carbonyls. However, traditional Wacker oxidation involves the use of homogeneous palladium and copper catalysts for the olefin addition and reductive elimination. Here, we demonstrated an ultrahigh loading Cu single atom catalyst(14% Cu, mass fraction) for the palladium-free Wacker oxidation of 4-vinylanisole into the corresponding ketone with N-methylhydroxylamine hydrochloride as an additive under mild conditions. Mechanistic studies by 18O and deuterium isotope labelling revealed a hydrogen shift mechanism in this palladium-free process using N-methylhydroxylamine hydrochloride as the oxygen source. The reaction scope can be further extended to Kucherov oxidation. Our study paves the way to replace noble metal catalysts in the traditional homogeneous processes with single atom catalysts.  相似文献   
4.
BPh3 catalyzes the N-methylation of secondary amines and the C-methylenation (methylene-bridge formation between aromatic rings) of N,N-dimethylanilines or 1-methylindoles in the presence of CO2 and PhSiH3; these reactions proceed at 30–40 °C under solvent-free conditions. In contrast, B(C6F5)3 shows little or no activity. 11B NMR spectra suggested the generation of [HBPh3]. The detailed mechanism of the BPh3-catalyzed N-methylation of N-methylaniline ( 1 ) with CO2 and PhSiH3 was studied by using DFT calculations. BPh3 promotes the conversion of two substrates (N-methylaniline and CO2) into a zwitterionic carbamate to give three-component species [Ph(Me)(H)N+CO2⋅⋅⋅BPh3]. The carbamate and BPh3 act as the nucleophile and Lewis acid, respectively, for the activation of PhSiH3 to generate [HBPh3], which is used to produce key CO2-derived species, such as silyl formate and bis(silyl)acetal, essential for the N-methylation of 1 . DFT calculations also suggested other mechanisms involving water for the generation of [HBPh3] species.  相似文献   
5.
6.
We studied the ring opening of propylene oxide (PO) by salen-M coordinated OH group [M = Al(III), Sc(III), Cr(III), Mn(III), Fe(III), Co(II), Co(III), Ni(II), Cu(II), Zn(II), Ru(III) and Rh(III)]. The results show that the ring-opening energy barriers for M(II) complexes are much lower than those with M(III) complexes in the gas phase, and the barriers correlate linearly with the negative charges on the OH group and the Fukui function condensed on the OH group. The nucleophilicity ordering in the gas phase can be rationalized by the ratio of formal positive charges/radius of M cations. Solvent effect greatly increases the barriers of M(II) complexes but slightly changes the results of M(III) ones, making the barriers similar. Analysis indicates that the reaction heats are linearly proportional to the reverse reaction barriers. The relationships established here can be used to estimate the ring-opening barriers and to screen epoxide ring-opening catalysts.  相似文献   
7.
The reaction mechanism for the hydrolysis of trimethyl phosphate and of the obtained phosphodiester by the di‐CoII derivative of organophosphate degrading enzyme from Agrobacterium radiobacter P230(OpdA), have been investigated at density functional level of theory in the framework of the cluster model approach. Both mechanisms proceed by a multistep sequence and each catalytic cycle begins with the nucleophilic attack by a metal‐bound hydroxide on the phosphorus atom of the substrate, leading to the cleavage of the phosphate‐ester bond. Four exchange‐correlation functionals were used to derive the potential energy profiles in protein environments. Although the enzyme is confirmed to work better as triesterase, as revealed by the barrier heights in the rate‐limiting steps of the catalytic processes, its promiscuous ability to hydrolyze also the product of the reaction has been confirmed. The important role played by water molecules and some residues in the outer coordination sphere has been elucidated, while the binuclear CoII center accomplishes both structural and catalytic functions. To correctly describe the electronic configuration of the d shell of the metal ions, high‐ and low‐spin arrangement jointly with the occurrence of antiferromagnetic coupling, have been herein considered.  相似文献   
8.
A generic strategy based on the use of CdSe/ZnS Quantum Dots (QDs) as elemental labels for protein quantification, using immunoassays with elemental mass spectrometry (ICP-MS), detection is presented. In this strategy, streptavidin modified QDs (QDs-SA) are bioconjugated to a biotinylated secondary antibody (b-Ab2). After a multi-technique characterization of the synthesized generic platform (QDs-SA-b-Ab2) it was applied to the sequential quantification of five proteins (transferrin, complement C3, apolipoprotein A1, transthyretin and apolipoprotein A4) at different concentration levels in human serum samples. It is shown how this generic strategy does only require the appropriate unlabeled primary antibody for each protein to be detected. Therefore, it introduces a way out to the need for the cumbersome and specific bioconjugation of the QDs to the corresponding specific recognition antibody for every target analyte (protein). Results obtained were validated with those obtained using UV–vis spectrophotometry and commercial ELISA Kits.  相似文献   
9.
Enantiopure β‐amino acids represent interesting scaffolds for peptidomimetics, foldamers and bioactive compounds. However, the synthesis of highly substituted analogues is still a major challenge. Herein, we describe the spontaneous rearrangement of 4‐carboxy‐2‐oxoazepane α,α‐amino acids to lead to 2′‐oxopiperidine‐containing β2,3,3‐amino acids, upon basic or acid hydrolysis of the 2‐oxoazepane α,α‐amino acid ester. Under acidic conditions, a totally stereoselective synthetic route has been developed. The reordering process involved the spontaneous breakdown of an amide bond, which typically requires strong conditions, and the formation of a new bond leading to the six‐membered heterocycle. A quantum mechanical study was carried out to obtain insight into the remarkable ease of this rearrangement, which occurs at room temperature, either in solution or upon storage of the 4‐carboxylic acid substituted 2‐oxoazepane derivatives. This theoretical study suggests that the rearrangement process occurs through a concerted mechanism, in which the energy of the transition states can be lowered by the participation of a catalytic water molecule. Interestingly, it also suggested a role for the carboxylic acid at position 4 of the 2‐oxoazepane ring, which facilitates this rearrangement, participating directly in the intramolecular catalysis.  相似文献   
10.
在中国科学技术大学夏季学期的研究型实验课程"化学科研基础训练"中开设"壳聚糖的制备与表征"综合实验,以龙虾壳为原料,通过除蛋白、脱盐、脱色、脱乙酰等一系列反应,制备得到目标产物壳聚糖。运用红外光谱、核磁共振仪、黏度法、滴定等对产品的结构及性能进行表征。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号