首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  国内免费   2篇
化学   23篇
  2023年   1篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1992年   1篇
排序方式: 共有23条查询结果,搜索用时 46 毫秒
1.
A new series of cationic heterodinuclear complexes, [M1M2Cl2(meso-dpmppp)(RNC)2]PF6 (M1=Ni, M2=Rh, R=tBu ( 1 a ); M1=Pd, M2=Rh, R=tBu ( 2 a ), Xyl ( 2 b ); M1=Pt, M2=Rh, R=tBu ( 3 a ), Xyl ( 3 b ); M1=Pd, M2=Ir, R=tBu ( 4 a )), supported by a tetradentate phosphine ligand, meso-Ph2PCH2P(Ph)(CH2)3P(Ph)CH2PPh2 (meso-dpmppp), were synthesized by stepwise reactions of meso-dpmppp with NiCl2 ⋅ 6H2O or MCl2(cod) (M=Pd, Pt), forming mononuclear metalloligands of [M1Cl2(meso-dpmppp)], and with [M2Cl(cod)]2 (M2=Rh, Ir) and RNC (R=tBu, Xyl) in the presence of [NH4][PF6]. The related neutral PdRh complex, [PdRhCl3(meso-dpmppp)(XylNC)] ( 5 ), was also prepared. The structures of 1 – 5 were determined by X-ray analyses to contain two square planar d8 metal centers with face-to-face arrangement, where meso-dpmppp supports M1 and M2 metal ions in cis/trans-P,P coordination mode, combining cis-{M1P2Cl2} and trans-{M2P2(CNR)2} units. Complexes 1 – 4 showed an intence characteristic absorption around 422–464 nm derived from RhI→RNC MLCT transition (HOMO→LUMO+1), which are influenced by changing M1 (NiII, PdII, PtII) metal ions since HOMO composed of dσ* orbitals appreciably destabilized by changing M1 from Ni to Pd, and Pt. The electronic structures of 1 a – 4 a were investigated on the basis of DFT calculations and NBO analyses to show weak but noticeable d8–d8 metallophilic interaction as empirical dispersion energy of 0.9–1.5 kcal/mol without M1–M2 covalent bonding interaction. In addition, 1 – 5 were utilized as catalysts for hydrosilylation of styrene, and the NiRh complex 1 a was found to show higher activity and chemo- and regioselectivity compared with 2 – 5 .  相似文献   
2.
This paper discusses coordination-position isomeric MIICuII and CuIIMII complexes, using unsymmetric dinucleating macrocycles (Lm;n)2− ((L2;2)2−, (L2;3)2− and (L2;4)2−) that comprise two 2-(N-methyl)-aminomethyl-6-iminomethyl-4-bromo-phenonate entities, combined through the ethylene chain (m = 2) between the two amine nitrogens and through the ethylene, trimethylene or tetramethylene chain(n = 2, 3 or 4) between the two imine nitrogens. The macrocycles have dissimilar N(amine)2O2 and N(imine)2O2 metal-binding sites sharing the phenolic oxygens. The reaction of the mononuclear CuII precursors, [Cu(L2;2)], [Cu(L2;2)] and [Cu(L2;2)], with a MII perchlorate and a MII acetate salt formed (acetato)MIICuII complexes: [CoCu(L2;2)(AcO)]ClO4·0.5H2O] (1), [NiCu(L2;2) (AcO)]ClO4 (2), [ZnCu(L2;2) (AcO)]ClO4 (3), [CoCu(L2;3)(AcO)]ClO4·0.5H2O (4), [NiCu(L2;3)(AcO)]ClO4 (5), [ZnCu(L2;3)(AcO)]ClO4·0.5H2O (6), [CoCu(L2;4)(AcO)(DMF)]ClO4 (7), [NiCu(L2;4) (AcO)]ClO4·2DMF (8) and [ZnCu(L2;4)(AcO)]ClO4 (9) (the formulation [MaMb (Lm;n)]2+ means that Ma resides in the aminic site and Mb in the iminic site). The site selectivity of the metal ions is demonstrated by X-ray crystallographic studies for 2·MeOH,3,5,7, and9. An (acetato)CuIIZnII complex, [CuZn(L2;3)(AcO)]ClO4 (10), was obtained by the reaction of [PbCu(L2;3)]-(ClO4)2 with ZnSO4·4H2O, in the presence of sodium acetate. Other complexes of the CuIIMII type were thermodynamically unstable to cause a scrambling of metal ions. The Cu migration from the iminic site to the aminic site in the synthesis of10 is explained by the ‘kinetic macrocyclic effect’. The coordination-position isomers,6 and10, are differentiated by physicochemical properties.  相似文献   
3.
A new homonuclear and heterodinuclear pyridine-2,6-dicarboxylate complexes, formulated as (enH2)[Cu(dipic)2]·2.5H2O (1) and [Cu(μ-dipic)2Zn(H2O)5]·2H2O (2) (en = ethylenediamine, dipic = pyridine-2,6-dicarboxylate) were synthesized according the reactions between the three species of copper(II) and zinc(II) nitrate, ethylenediamine and pyridine-2,6-dicarboxylic acid. Complexes have been characterized by the methods of elemental, spectroscopic (IR and UV–Vis), thermal (TG/DTG, DTA) analysis, magnetic measurement and single crystal X-ray diffraction. Correlation coefficient, activation energies, E∗; pre-exponential factor, A; entropies, S∗; enthalpies, H∗ and Gibbs free energies, G∗ of the thermal decomposition reactions have been calculated under the derivations from thermogravimetric (TG) and differential thermogravimetric (DTG) curves, using the Coats–Redfern and Horowitz–Metzger methods. Complex 1 belonged to a six-coordinate behavior with a distorted octahedral geometry around Cu(II), that the structure contains two pyridine-2,6-dicarboxylate species as a tridentate ligands and ethylenediaminium cation as a counter ion as well as 2.5 uncoordinated water molecules. On the other hand complex 2 contains six-coordinated Cu(II) and Zn(II) ions, which are linked by two O atoms of the same carboxyl group from dipicolinic acid. The dipicolinate dianions again behave as tridentate ligands in 2. Two uncoordinated water molecules are also present in the structure. The structure units of 1 and 2 are mutually held by the hydrogen bonds and π?π interactions. There is also a C–O?π interaction in 2. The Cu(II) complexes are connected to one another via O–H?O hydrogen bonds, forming water clusters, which play an important role in the stabilization of the crystal structure. In the water clusters, the water molecules are trapped by the cooperative association of coordination interactions as well as hydrogen bonds.  相似文献   
4.
[(η5-C5H5)ZrCl25-C5H4)CMe2(C5H5)] reacted with Co2(CO)8 to produce a heterodinuclear Zr(IV)-Co(I) complex [(η5-C5H5)ZrCl25-C5H4)CMe25-C5H4)Co(CO)2] (3). Complex 3 underwent oxidative addition of I2 to give [(η5-C5H5)ZrCl25-C5H4)CMe25-C5H4)CoI2(CO)] (4) having Zr(IV) and Co(III) centers. The carbonyl ligand of 4 was easily replaced with P(OMe)3 and PPh3 to afford [(η5-C5H5)ZrCl25-C5H4)CMe25-C5H4)CoI2(L)] (5: L = P(OMe)3, 6: L = PPh3). Structures of 5 and 6 were determined by X-ray crystallography. These Zr-Co heterodinuclear complexes catalyzed polymerization of ethylene and propylene.  相似文献   
5.
A potential anticancer heterodinuclear ruthenium(II)–platinum(II) complex, [ruthenium(II)(4,4′-dimethyl-2,2′-bipyridine)2(5-(l-cysteine-methyl ester)-1,10-phenanthroline)-trans-chlorodiammineplatinum(II)] chloride, [Ru(Me2bipy)2(5-(l-cysteine-Me)-phen)-trans-Pt(NH3)2Cl]Cl3, was synthesised. l-Cysteine methyl ester was used to link the two metal centres, as more conventional straight chain diaminoalkanes and 2-mercaptoethylamine failed to couple to the phenanthroline ligand. From the precursor mononuclear ruthenium(II) complexes, which were separated into their Δ- and Λ-isomers by column chromatography, the dinuclear complex was synthesised and characterised by 1H and 13C NMR, UV–Vis, circular dichroism, fluorescence and electrospray ionisation mass spectrometry.  相似文献   
6.
A novel heterodinuclear catalyst, ethylene bridged samarocene and titanocene chloride (Sm-Ti), was used both as a single component catalyst (cat.) and also by activation with triisobutyl aluminum (TIBA) to polymerize methyl methacrylate (MMA). The binary catalyst demonstrated higher activity than the single component, but the molecular weight of the resultant PMMA is lower. Ultrahigh molecular weight PMMA (1.5×106) was obtained at an attractive conversion (87%) without any cocatalyst. The effects of polymerization parameters, such as temperature, time, molar ratios of Al(i-Bu)3/cat. and MMA/cat., were studied in detail. The results showed that the catalytic activity had a rather different dependence on the polymerization temperature with/without TIBA. High molecular weight PMMA was much more easily prepared in a bulk system than in toluene solution. The polymer yielded with about 65% syndiotacticity by 1H NMR and 75% by IR spectroscopy, but its stereoregularity did not change too much with polymerization temperature and the concentration of TIBA.  相似文献   
7.
A new dinucleating ligand consisting of a tetraphenylporphyrin derivative covalently linked with di(2-benzimidazolylmethyl)imine and its homodinuclear Co–Co and heterodinuclear Co–Cu complexes were synthesized and spectroscopically characterized. The heterobimetallic Co–Cu complex, a cytochrome c oxidase active site model, can be obtained by a simple metathesis reaction of the homodinuclear complex with the metal salt in high yield.  相似文献   
8.
Cd-Ln杂双核配合物的合成、结构及发光性质   总被引:1,自引:0,他引:1  
采用混合溶剂热方法合成了3个新颖的杂双核d-f配合物, [LnCd(C8H7O3)5(phen)(H2O)](Ln=Dy(1), Pr(2), Gd(3); C8H7O3=对甲氧基苯甲酸根, phen=1,10-菲啰啉), 通过单晶X射线衍射确定了配合物的晶体结构. 结果表明, 3个化合物是同构的. 在同一个分子中, Cd2+与Ln3+通过3个对甲氧基苯甲酸根桥联, Cd2+为五配位, Ln3+为八配位. 在晶体中, 两个相邻的分子被氢键连成二聚体. 测定了3个配合物在室温下的IR, UV-Vis-NIR以及激发和发射光谱. 对比分析了化合物的UV-Vis-NIR吸收光谱与发射光谱的关系, 讨论了d-块(d-L部分)对Ln3+发光的影响.  相似文献   
9.
A novel heterodinuclear complex formed by the reaction of gadolinium nitrate with Schiff base complex of copper(II) has been synthesized and characterized. Preparation, crystal structure and magnetic properties of the heterodinuclear complex, LCu(Me2CO)Gd(NO3)3, (L=(N,N′-bis(2,3-dihydroxybenzylidene)-1,3-diaminopropane) are reported. The complex is consisting of a deca-coordinated GdIII ion which is bridged to four coordinated CuII via both phenolate oxygen atoms of the L Schiff base ligand. The average CuGd separation is 3.475(2) Å. There is also one non-coordinating acetone molecule in the crystal structure. The magnetic susceptibility of the complex was measured over the range 4.5–350 K and the observed data were successfully simulated by the equation based on the spin-Hamiltonian operator H=−JSCu·SGd. The values of the intrachain interaction parameters have been deduced from the magnetic data: exchange integral J(Cu–Gd)=7.3 cm−1, gCu=2.17, gGd=2.09. This indicates a weak ferromagnetic spin exchange interaction between CuII and GdIII ions. The nature of the magnetic super-exchange interaction of the title compound is compared with similar CuIIGdIII heterodinuclear complexes.  相似文献   
10.
The synfacial heterodinuclear μ-Cot complexes (Cot = cyclooctatetraene) [(CpCr) (CpM)]μ-Cot (Cp = cyclopentadienyl; M ? Fe, 3 ; M ? Co, 4 ) are formed in a thermal reaction of the mononuclear mixed sandwich compound CpCr(n6-Cot) and CpMLn [M ? Fe, Ln = benzene (Bz); M ? Co, Ln = (C2H4)2]. 3 possesses two unpaired electrons whereas 4 has only one unpaired electron and is ESR active. From the molecular structure of 3 and from the ESR data of 4 it can be deduced that the unpaired electrons are localized at the Cr centers predominantly forcing a close electronical relation between the heterodinuclear compounds 3 and 4 and the mononuclear sandwich complexes chromocene and CpCrBz, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号