首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   4篇
  国内免费   59篇
化学   210篇
晶体学   1篇
力学   3篇
物理学   22篇
  2024年   1篇
  2023年   6篇
  2022年   7篇
  2021年   4篇
  2020年   7篇
  2019年   6篇
  2018年   7篇
  2017年   10篇
  2016年   15篇
  2015年   9篇
  2014年   19篇
  2013年   18篇
  2012年   17篇
  2011年   19篇
  2010年   9篇
  2009年   19篇
  2008年   9篇
  2007年   10篇
  2006年   8篇
  2005年   9篇
  2004年   6篇
  2003年   1篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1988年   1篇
排序方式: 共有236条查询结果,搜索用时 304 毫秒
1.
乙酰化淀粉的塑化和性能研究   总被引:6,自引:0,他引:6  
以乙酰化改性淀粉为基体,甘油为增塑剂,利用哈克旋转流变仪密炼制备热塑性乙酰化淀粉.实验结果表明制备热塑性乙酰化淀粉的甘油/乙酰化淀粉配比应大于30/100(W/W),且随甘油含量增加,热塑性乙酰化淀粉的脆性降低.动态机械热分析(DMTA)显示热塑性乙酰化淀粉包含富甘油和富淀粉两相,乙酰化淀粉和甘油为部分互溶.流变学分析显示淀粉分子间作用力非常强,表现为类固态行为.同时本文对材料的热稳定性进行了初步研究.  相似文献   
2.
聚丙烯共混物反应挤出过程中的降解抑制   总被引:4,自引:0,他引:4  
聚丙烯/(丙烯腈-苯乙烯)共聚物在过氧化二异丙苯存在下反应共混挤出时,加入亚油酸三甘酯可以有效地抑制过程的降解,从挤出物中分离出聚丙烯组分测试熔体流动速率表明,加入亚油酸三甘酯后,其熔体流动速率有很大下降,扫描电子显微镜的观察表明,调节过氧化二异丙苯和亚油酸三甘酯的加入量,可有效控制降解并生成较多的接枝物相容性,显著改善相形态。  相似文献   
3.
A flow system for substrate recycling of NAD+/NADH was set up with an enzyme reactor containing coimmobilized glycerol dehydrogenase (GDH) and diaphorase. The product from the diaphorase catalysis, hexacyanoferrate(II), aws detected amperometrically at a glassy carbon electrode. The amplification factor was 150 for a reactor volume of 100 μ l at a flow-rate of 0.5 ml/min. With a stopped flow of four minutes, the signal increased another 88 times, resulting in a signal amplification of 13 300 times. Equations are derived for the amplification factor and used for a discussion of the optimization of amplification systems. The Km for GDH with glycerol as a substrate was found to be 5 × 10−3 M at pH 8.0. GDH from Cellulomonas sp. was purified on a gel filtration column and the purified enzyme showed a specificity toward NAD+, compared to NADP+, that was higher than 99.9%. Due to the NAD+ specificity of the purified GDH, the enzyme amplification system reported here could be used in detection systems for enzyme immunoassays when using alkaline phosphatase as a label and NADP+ as a substrate. The stability of immobilized GDH and diaphorase is several orders of magnitude better than that of alcohol dehydrogenase, which is the enzyme commonly used for NAD+-specific detection in these applications.  相似文献   
4.
An automatic flow procedure for the determination of glycerol in wines by employing a flow system based on multicommutation and enzymatic reaction is described. Glycerol dehydrogenase was immobilized on aminopropyl glass beads and packed into a column that was coupled to the flow system. The NADH produced by the enzymatic reaction was monitored by spectrophotometry at 340 nm and its radiation absorption presented a relationship with glycerol concentration. The system manifold comprised a set of three-way solenoid valves controlled by a microcomputer, which was furnished with electronic interfaces and runs a software that was designed to carry out on-line sample dilution, reagent addition, and data acquisition. The procedure allows the determination of glycerol in wine samples without any prior pretreatment. The procedure presented as profitable features a linear response range between 2.0 and 10.0 g l−1 glycerol (R=0.998), a detection limit of 0.006 g l−1 glycerol, a relative standard deviation of 1.8% (n=14) for a typical wine sample presenting 5.3 g l−1 glycerol, a sampling throughput of 33 determinations per hour, and a NAD+ consumption of 0.8 mg per determination. The results were compared with those obtained using a reference method and no significant difference at 90% confidence level was observed.  相似文献   
5.
The lipase-catalyzed transesterifications of various substituted diphenyl 1,2-ketals of glycerol have been investigated. Efficient modification of the substrate structure with bis(4-bromophenyl) ketal was found to enhance the enantioselectivity up to E=57 at 0 °C.  相似文献   
6.
Glycerol of different quality classifications served as a model for a neutral excess component in the isotachophoretic determination of low-molecular-mass anionic trace impurities. Potential anionic contaminants such as nitrate, sulphate, chlorate, nitrite, oxalate, fluoride formate and phosphate were analysed up to an analyte-to-excess ratio of 1:4·107, thus providing the possibility of checking the sample for the mentioned analytes in the order of 2.5·10−6–9.5·10−6%. Because we used a column-coupling isotachophoretic instrument the electrolyte system consisted of two different leading electrolytes, one for the pre-separation (10 mmol/l HCl, β-alanine, pH 3.2) in the first capillary and one for the final separation (5 mmol/l HCl, 1,3-bis[tris(hydroxymethyl)methylamino]propane, β-alanine, pH 3.6) in the second capillary. The terminating electrolyte was citric acid. Due to an increased injection volume of 300 μl, limits of detection (LODs) in the nanomolar range were realised by conductivity detection. The developed method allows simultaneous analysis without sample preparation and/or preconcentration within 25 min and is for that reason suitable for in-place process control.  相似文献   
7.
新型二氧化硫被动采样器的研制   总被引:1,自引:0,他引:1  
研究了一种新型二氧化硫被动采样器。考察了无纺布、定性滤纸和定量滤纸等吸收剂的载体在相同情况下对二氧化硫和二氧化氮的吸收效果 ,对吸收载体进行了优选。并针对低温地区和高温高湿的气候条件 ,确立了以三乙醇胺(TEA)为吸收主体 ,分别以乙二醇、丙三醇为添加剂的吸收体系。  相似文献   
8.
Capillary isoelectric focusing (CIEF) separations are usually performed with neutral coated fused-silica capillaries in aqueous anticonvective media. Glycerol, a very viscous solvent (eta = 945 mPa x s at 25 degrees C), known to help stabilize any kind of proteins and solubilize hydrophobic ones, was tested as an alternative to using commercial gels. Viscosity and electroosmotic mobility were measured as a function of gel or glycerol content in water, and a 30:70 v/v glycerol-water medium appeared as a good compromise for performing CIEF in a bare fused-silica capillary without imposing too high a viscosity. To demonstrate the feasibility of this new CIEF system, a standard mixture of nine model proteins was separated according to their pI with a good agreement between experimental and literature aqueous pIs. Moreover, better resolution was achieved with this system than with the conventional aqueous CIEF system, as two of the model proteins could not be separated in the latter system. Glycerol-water CIEF in bare silica capillary was next applied to the separation of horse radish peroxidase, a complex mixture of protein isoforms. The good concordance with the separation obtained by the conventional CIEF system indicated the adequacy of this new system. Finally, as anticipated from the results obtained for the separation of bacteriorhodopsin, a membrane protein, glycerol-water CIEF performed in bare silica capillary appears to be a promising alternative to conventional aqueous CIEF for hydrophobic protein characterization, under their native form.  相似文献   
9.
Despite the apparent simplicity of the copper(I) iodide catalyzed CuAAC reaction, the conversion of the catalytic species, i.e. Cu(I) to thermodynamically more stable Cu(II), via aerial oxidation or disproportionation is a major issue. To stabilize the Cu(I) species, the reaction is ideally carried out under an inert atmosphere in the presence of additives such as alcohols, amines, thiols, and aldehydes. Herein, we report the first CuI catalyzed click reaction without an inert atmosphere by employing the CuI/l-proline system in glycerol. The method showed remarkable stability towards sensitive functional groups such as acetonides and 1,2,4-trioxanes.  相似文献   
10.
《Electroanalysis》2018,30(9):2167-2175
Here, we built Ru‐decorated Pt/C nanoparticles with different coverage degrees (θRu) by wall‐jet configuration for the first time, and we investigated their catalytic properties towards glycerol electrooxidation in acidic medium. Moreover, we used the most active catalysts as the anode in electrolysis to produce carbonyl compounds. The use of an electrochemical cell in wall‐jet configuration allows for the controlling of electrodeposition through easily handling parameters; namely, the θRu is controlled by changing the concentration of the metallic precursor, speed, and volume of injection onto a Pt/C‐modified glassy carbon electrode under applied potential. Excess of Ru on a Pt surface inhibits glycerol dissociative adsorption, which limits further electrooxidation; whereas low θRu do not provide surface oxygen species to the anodic reaction. Hence, intermediates θRu reveal active catalysts – namely, θRu=0.42 shifts the onset potential 170 mV towards lower values and increases 1.65‐fold the current density at 0.5 V. The stability of this catalyst is also enhanced by maintaining a more constant current density during successive potential cycles in the presence of glycerol and by avoiding Ru leaching from the surface. The electrolysis on Ru‐decorated Pt/C is shown to lead the reaction towards formic acid (‘high oxidation state’), decreasing the amounts of glyceradehyde, glycolic acid, and dihydroxyacetone, as a result of the improved catalytic properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号