首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   7篇
  国内免费   14篇
化学   36篇
晶体学   1篇
力学   5篇
物理学   15篇
  2023年   2篇
  2021年   2篇
  2020年   6篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   5篇
  2010年   3篇
  2009年   6篇
  2008年   1篇
  2006年   2篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1999年   3篇
  1996年   2篇
  1992年   2篇
  1980年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
Fe2(CO)6(μ-S2) was used as a single source precursor in attempt to produce FeS film via MOCVD. Pyrolysis of Fe2(CO)6(μ-S2) at temperature below 500℃ produced Fe1-xS or Fe7S8 powder as indicated by its powder X-ray spectra. At 750 ℃, polycrystalline FeS powder was obtained. In film deposition, polycrystalline Fe1-xS or Fe7Ss films were obtained on Si(100) and Ag/Si(100) substrates below 500 ℃. SEM micrographs showed the film on Si(100) substrate containing whisker like grains. However, pillar like grains were obtained on Ag/Si(100) substrate.Deposition rates are also different for different substrates as evaluated by the thickness of the films, which were obtained by SEM micrographs of the cross section of the films. At 750℃, similar polycrystalline Fe1-xS or Fe7S8 film was obtained.  相似文献   
2.
3.
以氯化亚铁和硫代硫酸钠为原料, 采用水热法一步合成了由FeS2纳米片堆积的FeS2微球. 通过调控铁源与硫源的摩尔比及水热合成时间, 并结合X射线衍射(XRD)和扫描电子显微镜(SEM)表征结果推测了FeS2的生长机理, 筛选出最优条件以提升其电化学性能. 电化学测试结果表明, 在500 mA/g的电流密度条件下, 材料的首次放电/充电容量可分别达到905和800 mA·h·g -1, 首次库伦效率达到88.4%; 在2000 mA/g的大电流密度条件下, 500次放电/充电循环后依然稳定保持350 mA·h·g -1的可逆容量.  相似文献   
4.
基于之前的激光诱导荧光激发谱工作,采用激光诱导荧光色散谱技术直接侦测中性FeS基电子态X5¢振动能级到v″=3而获得其振动常数. 所得FeS(X5△)振动频率值(518±5 cm-1)和最近的光电子能谱测量值(520±30 cm-1) [J. Phys. Chem. A 107, 2821 (2003)]符合得较好,该光电子能谱测量值是之前唯一报道的FeS电子态振动频率的实验值. 通过比较实验结果和相关文献(主要来自理论预测),确定FeS的基态是X5△态.  相似文献   
5.
First-principles calculations based on density functional theory (DFT) and the generalized gradient approximation (GGA) have been used to study the adsorption of CO molecule on the perfect and defective FeS 2 (100) surfaces. The defective Fe 2 S(100) surfaces are caused by sulfur deficiencies. Slab geometry and periodic boundary conditions are employed with partial relaxations of atom positions in calculations. Two molecular orientations, Cand O-down, at various distinct sites have been considered. Total energy calculations indicated that no matter on perfect or deficient surfaces, the Fe position is relatively more favored than the S site with the predicted binding energies of 120.8 kJ/mol and 140.8 kJ/mol, respectively. Moreover, CO was found to be bound to Fe atom in vertical configuration. The analysis of density of states and vibrational frequencies before and after adsorption showed clear changes of the C–O bond.  相似文献   
6.
Iopromide (IOP), an iodinated X-ray contrast medium (ICM), is identified as a precursor to iodide disinfection byproducts that have high genotoxicity and cytotoxicity to mammals. ICM remains persistent through typical wastewater treatment processes and even through some hydroxyl radical-based advanced oxidation processes. The development of new technologies to remove ICMs is needed. In this work, mackinawite (FeS)-activated sulfite autoxidation was employed for the degradation of IOP-containing water. The experiment was performed in a 500 mL self-made temperature-controlled reactor with online monitoring pH and dissolved oxygen in the laboratory. The effects of various parameters, such as initial pH values, sulfite dosages, FeS dosages, dissolved oxygen, and inorganic anions on the performance of the treatment process have been investigated. Eighty percent of IOP could be degraded in 15 min with 1 g L−1 FeS, 400 μmol L−1 sulfite at pH 8, and high efficiency on the removal of total organic carbon (TOC) was achieved, which is 71.8% via a reaction for 1 h. The generated hydroxyl and oxysulfur radicals, which contributed to the oxidation process, were identified through radical quenching experiments. The dissolved oxygen was essential for the degradation of IOP. The presence of Cl could facilitate IOP degradation, while NO3 and CO32− could inhibit the degradation process. The reaction pathway involving H-abstraction and oxidative decarboxylation was proposed, based on product identification. The current system shows good applicability for the degradation of IOP and may help in developing a new approach for the treatment of ICM-containing water.  相似文献   
7.
Chemical Vapor Transport of Solid Solutions. 7. Chemical Vapor Transport of FeS/MnS/ZnS Mixed Crystals By means of chemical vapor transport using iodine as transport agent (900 → 800 °C) it is possible to prepare in the quasiternary system FeS/MnS/ZnS the mixed crystals (Fe,Mn,Zn)S (sphalerite and wurtzite type), (Fe,Mn)S(ZnS) (NaCl type) and FeS(MnS,ZnS) (NiAs type) in form of single crystals. Based on the composition of these phases the phase diagram for the system FeS/MnS/ZnS at 800 °C was drawn up. The incongruent transport process leads to the accumulation of ZnS in the crystallization zone.  相似文献   
8.
Microbes are routinely engineered to synthesize high-value chemicals from renewable materials through synthetic biology and metabolic engineering. Microbial biosynthesis often relies on expression of heterologous biosynthetic pathways, i.e., enzymes transplanted from foreign organisms. Metallocluster enzymes are one of the most ubiquitous family of enzymes involved in natural product biosynthesis and are of great biotechnological importance. However, the functional expression of recombinant metallocluster enzymes in live cells is often challenging and represents a major bottleneck. The activity of metallocluster enzymes requires essential supporting pathways, involved in protein maturation, electron supply, and/or enzyme stability. Proper function of these supporting pathways involves specific protein–protein interactions that remain poorly characterized and are often overlooked by traditional synthetic biology approaches. Consequently, engineering approaches that focus on enzymatic expression and carbon flux alone often overlook the particular needs of metallocluster enzymes. This review highlights the biotechnological relevance of metallocluster enzymes and discusses novel synthetic biology strategies to advance their industrial application, with a particular focus on iron-sulfur cluster enzymes. Strategies to enable functional heterologous expression and enhance recombinant metallocluster enzyme activity in industrial hosts include: (1) optimizing specific maturation pathways; (2) improving catalytic stability; and (3) enhancing electron transfer. In addition, we suggest future directions for developing microbial cell factories that rely on metallocluster enzyme catalysis.  相似文献   
9.
Chemical Vapor Transport of Solid Solutions. 5 Chemical Transport of MnS/ZnS, FeS/ZnS, and FeS/MnS Mixed Crystals By means of chemical vapor transport it is possible to prepare in the quasibinary systems MnS/ZnS, FeS/ZnS, and FeS/MnS the mixed crystals (Mn,Zn)S (sphalerite- and wurtzite-type), (Fe,Zn)S (sphalerite- and wurtzite-type), (Fe,Mn)S (NaCl-type), MnS(ZnS) (NaCl-type), FeS(ZnS) and FeS(MnS) (both NiAs-type) in form of single crystals. The experiments harmonize with the phase diagrams. Lattice parameters have been determined.  相似文献   
10.
Samples of FeS were oxidized by oxygen‐bearing acidic solutions at 25 °C and different initial pH values (2.75 ≤ pH ≤ 3.45). The reacted FeS samples were investigated by scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms measurements, and FT‐Raman spectroscopy. A sulfur rich phase (layer) is inferred to be form on reacting FeS surface based on sequential extraction with acidic chromium(II) chloride solutions. The sulfur‐rich layer (SRL) formed on oxidized FeS samples is traversed by various mesopores with average pore size < 450Å. It is reasonable to assume that the mesopores facilitate the migration of iron and sulfur from FeS structure into solution across SRL. The FT‐Raman spectra of oxidized FeS samples show an intense peak at 162 cm?1, which can be attributed to SRL developed on FeS surface. A model for SRL development on FeS during its oxidation by dissolved oxygen has been proposed from the present results and previous studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号