首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
  国内免费   7篇
化学   48篇
物理学   3篇
  2024年   1篇
  2023年   13篇
  2022年   5篇
  2021年   10篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2011年   5篇
  2009年   1篇
  2004年   2篇
  2002年   1篇
  2000年   1篇
  1991年   1篇
  1985年   1篇
排序方式: 共有51条查询结果,搜索用时 936 毫秒
1.
Oxygen reduction reaction (ORR) is one of the most technologically relevant reactions. It occurs at the interface of the electrocatalyst and electrolyte, where oxygen reacts with protons and electrons to produce water. Because the electrocatalyst is dispersed on a high surface area support, morphological confinement becomes critical, as it dictates proton and oxygen transport. Furthermore, confinement is induced by ionomer, ionic liquids (ILs), or molecular additives, and their impact on electrocatalyst reactivity and transport properties is currently not well understood. We present an overview of electrostatics and mass transport–induced confinement and zoom in into ILs and molecular additives and try to unravel how local confinement induced by them impacts ORR.  相似文献   
2.
This review discusses the latest advances in electrodeposition of nanostructured catalysts for electrochemical energy conversion: fuel cells, water splitting, and carbon dioxide electroreduction. The method excels at preparing efficient and durable nanostructured materials, such as nanoparticles, single atom clusters, hierarchical bifunctional combinations of hydroxides, selenides, phosphides, and so on. Yet, in most cases, chemical composition cannot be decoupled from catalyst morphology. This compromises the rational design of electrodeposition procedures because performance indicators depend on both morphology and surface chemistry. We expect electrodeposition will keep unraveling its potential as the preferred method for electrocatalyst synthesis once a deeper understanding of the electrochemical growth process is combined with complex chemistries to have control of the morphology and the surface composition of complex (bifunctional) electrocatalysts.  相似文献   
3.
《中国化学快报》2021,32(9):2597-2616
Electrochemical overall water splitting is attracting a broad focus as a promising strategy for converting the electrical output of renewable resources into chemical fuels, specifically oxygen and hydrogen. However, the urgent challenge in water electrolysis is to search for low-cost, high-efficiency catalysts based on earth-abundant elements as an alternative to the high-cost but effective noble metal-based catalysts. The transition metal-based catalysts are more appealing than the noble metal catalysts because of its low cost, high performance and long stability. Some recent advances for the development in overall water splitting are reviewed in terms of transition metal-based oxides, carbides, phosphides, sulfides, and hybrids of their mixtures as hybrid bifunctional electrocatalysts. Concentrating on different catalytic mechanisms, recent advances in their structural design, controllable synthesis, mechanistic insight, and performance-enhancing strategies are proposed. The challenges and prospects for the future development of transition metal-based bifunctional electrocatalysts are also addressed.  相似文献   
4.
《中国化学快报》2021,32(8):2484-2488
Electrochemical water splitting is a facile and effective route to generate pure hydrogen and oxygen.However,the sluggish kinetics of hydrogen evolution reaction(HER) and especially oxygen evolution reaction(OER) hinder the water splitting efficiency.Meanwhile,the high-cost of noble-metal catalysts limit their actual application.It is thus highly urgent to exploit an economical and earthabundant bifunctional HER and OER electrocatalyst to simplify procedure and reduce cost.Herein,we synthesize the three-dimensionally ordered macro-/mesoporous(3 DOM/m) Ni_xCo_(100-x) alloys with distinctive structure and large surface area via a dual-templating technique.Among them,the3 DOM/m Ni_(61)Co_(39) shows the lowest overpotentials of 121 mV and 241 mV at 10 mA/cm~2 for HER and OER,respectively.Furthermore,when employed for water splitting,the Ni_(61)Co_(39) only requires 1.60 V to approach 10 mA/cm2 and presents excellent stability.These encouraging performances of the Ni_(61)Co_(39)render it a promising bifunctional catalyst for overall water splitting.  相似文献   
5.
With the environmental pollution and non‐renewable fossil fuels, it is imperative to develop eco‐friendly, renewable, and highly efficient electrocatalysts for sustainable energy. Herein, a simple electrospinning process used to synthesis Mo2C‐embedded multichannel hollow carbon nanofibers (Mo2C‐MCNFs) and followed by the pyrolysis process. As prepared lotus root‐like nanoarchitecture could offer rich porosity and facilitate the electrolyte infiltration, the Mo2C‐MCNFs delivered favourable catalytic activity for HER and OER. The resultant catalysts exhibit low overpotentials of 114 mV and 320 mV at a current density of 10 mA cm?2 for HER and OER, respectively. Furthermore, using the Mo2C‐MCNFs catalysts as a bifunctional electrode toward overall water splitting, which only needs a small cell voltage of 1.68 V to afford a current density of 10 mA cm?2 in the home‐made alkaline electrolyzer. This interesting work presents a simple and effective strategy to further fabricating tunable nanostructures for energy‐related applications.  相似文献   
6.
Metals and ceramics can behave as active electrocatalyst materials, particularly in hydrocarbon oxidation in anodic reaction fuel cells. Combustion synthesis is a very reliable, fruitful and rapid synthesis method to produce metals, ceramics and cermets with low particle size and high specific surface area. This work describes the preparation of nanoparticle Pt/Ru alloys, ceramic perovskites such as Sm0.95CoO3–, and Sm0.95CoO3–/Pt cermets, and shows how promising these materials can be in the role of electrochemically active materials.Presented at the OSSEP Workshop Ionic and Mixed Conductors: Methods and Processes, Aveiro, Portugal, 10–12 April 2003  相似文献   
7.
前文介绍了新型双功能氧电极材料Pb_2[Ru_(2-x-g)Sb_xPb_y]O_(7-z)焦绿石型复合氧化物(简称Pb-Sb-Ru氧化物)的合成及其性能。本文介绍氧在该氧化物上还原及析出的动力学特性。 1 实验方法 1.1 材料的制备 Pb-Sb-Ru氧化物的制备、检测方法同文献中的材料4~#。  相似文献   
8.
Oxygen reduction reaction (ORR) is vital for clean and renewable energy technologies, which require no fossil fuel but catalysts. Platinum (Pt) is the best-known catalyst for ORR. However, its high cost and scarcity have severely hindered renewable energy devices (e.g., fuel cells) for large-scale applications. Recent breakthroughs in carbon-based metal-free electrochemical catalysts (C-MFECs) show great potential for earth-abundant carbon materials as low-cost metal-free electrocatalysts towards ORR in acidic media. This article provides a focused, but critical review on C-MFECs for ORR in acidic media with an emphasis on advances in the structure design and synthesis, fundamental understanding of the structure-property relationship and electrocatalytic mechanisms, and their applications in proton exchange membrane fuel cells. Current challenges and future perspectives in this emerging field are also discussed.  相似文献   
9.
A novel chemical method based on ultrasonic assisted polyol synthesis for the fabrication of highly dispersed Pt nanoparticles on multi-walled carbon nanotubes (MWCNTs) was developed. The simple and green method took only about 10 min at ambient temperature. The structure and chemical nature of the resulting Pt/MWCNT composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive X-ray spectrometry (EDS). The results showed that the prepared Pt nanoparticles were uniformly dispersed on the MWCNT surface. The mean size of Pt nanoparticles was about 2.8 nm. Electrochemical properties of Pt/MWCNT electrode for methanol oxidation were examined by cyclic voltammetry (CV) and excellent electrocatalytic activities could be observed. The possible formation mechanism of Pt/MWCNTs was also discussed.  相似文献   
10.
Owning the merits of low-cost, unique electronic and geometric properties, atomically dispersed M-N-C materials have been extensively examined as robust electrocatalysts for many important electrochemical reactions. Nevertheless, it remains a grand synthetic challenge to fabricate such materials with a high concentration of isolated metal active sites, as the formation of metal clusters/nanoparticles seems to be inevitable during the calcination process due to the high surface free energy of single-atom metals. As a result, although M-N-Cs have been successfully tuned to display remarkable activities per metal atomic site, their overall catalytic performances are still unsatisfactory. In this current opinion article, we summarize recent advances in innovative strategies to increase the active-site density of M-N-Cs and also propose the future opportunities and challenges for fostering the practical application of M-N-Cs in electrochemical devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号