首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1317篇
  免费   60篇
  国内免费   3篇
化学   915篇
晶体学   22篇
力学   17篇
数学   55篇
物理学   371篇
  2023年   11篇
  2022年   9篇
  2021年   20篇
  2020年   20篇
  2019年   20篇
  2018年   19篇
  2017年   17篇
  2016年   31篇
  2015年   30篇
  2014年   32篇
  2013年   80篇
  2012年   74篇
  2011年   62篇
  2010年   47篇
  2009年   38篇
  2008年   72篇
  2007年   85篇
  2006年   61篇
  2005年   71篇
  2004年   81篇
  2003年   45篇
  2002年   37篇
  2001年   32篇
  2000年   34篇
  1999年   17篇
  1998年   12篇
  1997年   10篇
  1996年   16篇
  1995年   19篇
  1994年   16篇
  1993年   12篇
  1992年   16篇
  1991年   11篇
  1990年   13篇
  1989年   12篇
  1988年   17篇
  1987年   10篇
  1986年   12篇
  1985年   21篇
  1984年   19篇
  1983年   6篇
  1982年   6篇
  1981年   7篇
  1980年   10篇
  1979年   15篇
  1977年   11篇
  1975年   12篇
  1974年   7篇
  1972年   8篇
  1966年   5篇
排序方式: 共有1380条查询结果,搜索用时 31 毫秒
1.
The direct 2‐deoxyglycosylation of nucleophiles with glycals leads to biologically and pharmacologically important 2‐deoxysugar compounds. Although the direct addition of hydroxyl and sulfonamide groups have been well developed, the direct 2‐deoxyglycosylation of amide groups has not been reported to date. Herein, we show the first direct 2‐deoxyglycosylation of amide groups using a newly designed Brønsted acid catalyst under mild conditions. Through mechanistic investigations, we discovered that the amide group can inhibit acid catalysts, and the inhibition has made the 2‐deoxyglycosylation reaction difficult. Diffusion‐ordered two‐dimensional NMR spectroscopy analysis implied that the 2‐chloroazolium salt catalyst was less likely to form aggregates with amides in comparison to other acid catalysts. The chlorine atom and the extended π‐scaffold of the catalyst played a crucial role for this phenomenon. This relative insusceptibility to inhibition by amides is more responsible for the catalytic activity than the strength of the acidity.  相似文献   
2.
The development of highly immunodeficient mouse strains has allowed the reconstitution of functional human immune system components in mice. New-generation humanized mice generated in this manner have been extensively used for modeling viral infections that are exclusively human tropic. Epstein–Barr virus (EBV)-infected humanized mice reproduce cardinal features of EBV-associated B-cell lymphoproliferative disease and EBV-associated hemophagocytic lymphohistiocytosis (HLH). Erosive arthritis morphologically resembling rheumatoid arthritis (RA) has also been recapitulated in these mice. Low-dose EBV infection of humanized mice results in asymptomatic, persistent infection. Innate immune responses involving natural killer cells, EBV-specific adaptive T-cell responses restricted by human major histocompatibility and EBV-specific antibody responses are also elicited in humanized mice. EBV-associated T-/natural killer cell lymphoproliferative disease, by contrast, can be reproduced in a distinct mouse xenograft model. In this review, recent findings on the recapitulation of human EBV infection and pathogenesis in these mouse models, as well as their application to preclinical studies of experimental anti-EBV therapies, are described.  相似文献   
3.
We have synthesized a series of triarylamine‐cored molecules equipped with an adjacent amide moiety and dendritic peripheral tails in a variety of modes. We show by 1H NMR and UV/Vis spectroscopy that their supramolecular self‐assembly can be promoted in solution upon light stimulation and radical initiation. In addition, we have probed their molecular arrangements and mesomorphic properties in the bulk by integrated studies on their film state by using differential scanning calorimetry (DSC), variable‐temperature polarizing optical microscopy (VT‐POM), variable‐temperature X‐ray diffraction (VT‐XRD), and atomic force microscopy (AFM). Differences in the number and the disposition of the peripheral tails significantly affect their mesomorphic properties associated with their lamellar‐ or columnar‐packed nanostructures, which are based on segregated stacks of the triphenylamine cores and the lipophilic/lipophobic periphery. Such structural tuning is of interest for implementation of these soft self‐assemblies as electroactive materials from solution to mesophases.  相似文献   
4.
To explore new cavity functions, we herein employed cis-trans stereoisomers with a N=N, C=C, or C=N unit as guest indicators for a polyaromatic capsule. Thanks to the rigid, spherical cavity with a diameter of ∼1 nm, azobenzene and stilbene derivatives are quantitatively encapsulated by the capsule with 100 % cis-selectivity in water. The isomerization of the cis-azo compound is suppressed against heat and light in the cavity, due to the confinement effect. Furthermore, C,N-diphenyl imine derivatives are quantitatively encapsulated by the capsule in water and adopt an otherwise unstable cis-form. The polyaromatic cavity suppresses the hydrolysis of the imines in water, even at elevated temperature, due to the shielding effect. Accordingly, the properties of the cis-trans isomers could be largely altered through supramolecular manipulation.  相似文献   
5.
Arylpyrrolyldiketone boron complexes as anion‐responsive π‐electronic molecules were synthesized by Claisen condensations of acetylpyrrole and corresponding aryl esters. The synthesized π‐electronic molecules exhibited anion‐binding behavior with various binding modes including pyrrole‐inverted and non‐inverted [1+1]‐type anion complexes as well as [2+1]‐type complexes owing to the presence of only a single pyrrole ring. Furthermore, solid‐state ion‐pairing assemblies, comprising receptor–anion complexes and countercations, were constructed based on fairly planar [2+1]‐type complexes.  相似文献   
6.
Owing to marked advances in instrumentation in X-ray and neutron scattering the time-dependent pair correlation function, the Van Hove function, can now be determined by inelastic X-ray and neutron scattering measurements. The local dynamics of water in real space and time is visualised by this approach. We discuss how the dynamic properties, such as viscosity and diffusion, can be elucidated through the Van Hove function of water.  相似文献   
7.
Stereoselective and streamlined synthesis of the proposed C79–C104 fragment 2 of symbiodinolide ( 1 ), a polyol marine natural product with a molecular weight of 2860, was achieved. In the synthetic route, the proposed C79–C104 fragment 2 was synthesized by utilizing a Julia–Kocienski olefination and subsequent Sharpless asymmetric dihydroxylation as key transformations in a convergent manner. Detailed comparison of the 13C NMR chemical shifts between the natural product and the synthetic C79–C104 fragment 2 revealed that the stereostructure at the C91–C99 carbon chain moiety of symbiodinolide ( 1 ) should be reinvestigated.  相似文献   
8.
9.
We newly designed and prepared a novel molybdenum complex bearing a 4-[3,5-bis(trifluoromethyl)phenyl]pyridine-based PNP-type pincer ligand, based on the bond dissociation free energies (BDFEs) of the N−H bonds in molybdenum-imide complexes bearing various substituted pyridine-based PNP-type pincer ligands. The complex worked as an excellent catalyst toward ammonia formation from the reaction of an atmospheric pressure of dinitrogen with samarium diiodide as a reductant and water as a proton source under ambient reaction conditions, where up to 3580 equivalents of ammonia were formed based on the molybdenum atom of the catalyst. The catalytic activity was significantly improved by one order of magnitude larger than that observed when using the complex before modification.  相似文献   
10.
In this work, we aimed to develop a dicyanomethyl radical that undergoes both reversible C−C bond formation/dissociation and metal-ligand coordination reactions to combine dynamic covalent chemistry (DCC) based on organic radicals with coordination chemistry. We have previously reported a dicyanomethyl radical conjugated with a triphenylamine ( 1 ⋅) that exhibits a monomer/dimer equilibrium between the σ-bonded dimer ( 12 ). We designed and synthesized a novel dicyanomethyl radical with a pyridyl group as a coordination point ( 2 ⋅) by replacing the phenyl group of 1 ⋅ with a 3-pyridyl group. We showed that 2 ⋅ is also in an equilibrium with the σ-bonded dimer ( 22 ) in solution and has suitable thermodynamic parameters for application in DCC. 22 coordinates to PdCl2 in a 2 : 2 ratio to selectively form a metallamacrocycle ( 22 )2(PdCl2)2, and its structure was clarified by single crystal X-ray analysis. Variable-temperature NMR, ESR, and electronic absorption measurements revealed that ( 22 )2(PdCl2)2 also undergoes the reversible C−C bond formation/dissociation reaction. Ligand-exchange experiment showed that 22 was liberated from ( 22 )2(PdCl2)2 by the addition of another ligand with a higher affinity for PdII. This work demonstrated that DCC based on dicyanomethyl radicals works orthogonally to metal-ligand coordination reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号