首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quite recently we have found two nitrogen fixation systems catalyzed by molybdenum-dinitrogen complexes under mild reaction conditions; one is the transformation of molecular dinitrogen into its synthetic equivalent of ammonia and the other is that into ammonia. A molybdenum-dinitrogen complex bearing two ferrocenyl diphosphines works as a good catalyst in the transformation of molecular dinitrogen into silylamine, where up to 226 equiv are produced based on the catalyst. A dinitrogen-bridged dimolybdenum complex bearing a PNP-type pincer ligand works as a good catalyst in the direct transformation of molecular dinitrogen into ammonia, where up to 23 equiv are produced based on the catalyst. We believe that both systems provide a new aspect in the development of novel nitrogen fixation.  相似文献   

2.
《Comptes Rendus Chimie》2015,18(7):776-784
Synthesis of transition metal–dinitrogen complexes and stoichiometric transformations of their coordinated dinitrogen into ammonia and hydrazine have so far been well investigated in order to achieve a novel nitrogen fixation under ambient conditions. As an extension of our study, the dimolybdenum–dinitrogen complex bearing PNP pincer ligands has been found to work as an effective catalyst for the formation of ammonia from dinitrogen, where 52 equiv of ammonia are produced based on the catalyst (26 equiv of ammonia are produced based on the molybdenum atom of the catalyst). This is the most effective catalytic reaction system for the formation of ammonia from molecular dinitrogen catalyzed by transition metal–dinitrogen complexes as catalysts under ambient reaction conditions. Herein, we describe recent results concerning the catalytic reaction, including the proposed reaction pathway.  相似文献   

3.
The direct formation of ammonia from molecular dinitrogen under mild reaction conditions was achieved by using new cobalt dinitrogen complexes bearing an anionic PNP‐type pincer ligand. Up to 15.9 equivalents of ammonia were produced based on the amount of catalyst together with 1.0 equivalent of hydrazine (17.9 equiv of fixed nitrogen atoms).  相似文献   

4.
A series of dinitrogen-bridged dimolybdenum–dinitrogen complexes bearing metallocene-substituted PNP-pincer ligands is synthesized by the reduction of the corresponding monomeric molybdenum–trichloride complexes under 1 atm of molecular dinitrogen. Introduction of ferrocene as a redox-active moiety to the pyridine ring of the PNP-pincer ligand increases the catalytic activity for the formation of ammonia from molecular dinitrogen, up to 45 equiv. of ammonia being formed based on the catalyst (22 equiv. of ammonia based on each molybdenum atom of the catalyst). The time profile for the catalytic reaction reveals that the presence of the ferrocene unit in the catalyst increases the rate of ammonia formation. Electrochemical measurement and theoretical studies indicate that an interaction between the Fe atom of the ferrocene moiety and the Mo atom in the catalyst may play an important role to achieve a high catalytic activity.  相似文献   

5.
In the presence of an iridium pincer complex, dehydrogenation of ammonia borane (H3NBH3) occurs rapidly at room temperature in tetrahydrofuran to generate 1.0 equivalent of H2 and [NH2BH2]5. A metal borohydride complex has been isolated as a dormant form of the catalyst which can be reactivated by reaction with H2.  相似文献   

6.
Transfer hydrogenation of azobenzene with ammonia borane mediated by pincer bismuth complex 1 was systematically investigated through density functional theory calculations. An unusual metal-ligand cooperation mechanism was disclosed, in which the saturation/regeneration of the C=N functional group on the pincer ligand plays an essential role. The reaction is initiated by the hydrogenation of the C=N bond (saturation) with ammonia borane to afford 3CN , which is the rate-determining step with Gibbs energy barrier (ΔG) and Gibbs reaction energy (ΔG) of 25.6 and −7.3 kcal/mol, respectively. 3CN is then converted to a Bi−H intermediate through a water-bridged pathway, which is followed up with the transfer hydrogenation of azobenzene to produce the final product N,N′-diphenylhydrazine and regenerate the catalyst. Finally, the catalyst could be improved by substituting the phenyl group for the tert-butyl group on the pincer ligand, where the ΔG value (rate-determining step) decreases to 24.0 kcal/mol.  相似文献   

7.
Newly designed and prepared vanadium complexes bearing anionic pyrrole‐based PNP‐type pincer and aryloxy ligands were found to work as effective catalysts for the direct conversion of molecular dinitrogen into ammonia and hydrazine under mild reaction conditions. This is the first successful example of vanadium‐catalyzed dinitrogen reduction under mild reaction conditions.  相似文献   

8.
A series of chromium-halide, -nitride, and -dinitrogen complexes bearing carbene- and phosphine-based PCP-type pincer ligands has been newly prepared, and some of them are found to work as effective catalysts to reduce dinitrogen under atmospheric pressure, whereby up to 11.60 equiv. of ammonia and 2.52 equiv. of hydrazine (16.6 equiv. of fixed N atom) are produced based on the chromium atom. To the best of our knowledge, this is the first successful example of chromium-catalyzed conversion of dinitrogen to ammonia and hydrazine under mild reaction conditions.  相似文献   

9.
Metal–ligand cooperation (MLC) plays an important role in catalysis. Systems reported so far are generally based on a single mode of MLC. We report here a system with potential for MLC by both amine–amide and aromatization–dearomatization ligand transformations, based on a new class of phosphino–pyridyl ruthenium pincer complexes, bearing sec‐amine coordination. These pincer complexes are effective catalysts under unprecedented mild conditions for acceptorless dehydrogenative coupling of alcohols to esters at 35 °C and hydrogenation of esters at room temperature and 5 atm H2. The likely actual catalyst, a novel, crystallographically characterized monoanionic de‐aromatized enamido–RuII complex, was obtained by deprotonation of both the N?H and the methylene proton of the N‐arm of the pincer ligand.  相似文献   

10.
Pincer complex catalyzed substitution of various propargylic substrates could be achieved using tin- and silicon-based dimetallic reagents to obtain propargyl- and allenylstannanes and silanes. These reactions involving chloride, mesylate, and epoxide substrates could be carried out under mild conditions, and therefore many functionalities (such as COOEt, OR, OH, NR, and NAc) are tolerated. It was shown that pincer catalysts with electron-supplying ligands, such as NCN, SCS, and SeCSe complexes, display the highest catalytic activity. The catalytic substitution of secondary propargyl chlorides and primary propargyl chlorides with electron-withdrawing substituents proceeds with high regioselectivity providing the allenyl product. Opening of the propargyl epoxides takes place with an excellent stereo- and regioselectivity to give stereodefined allenylstannanes. Silylstannanes as dimetallic reagents undergo an exclusive silyl transfer to the propargylic substrate affording allenylsilanes with high regioselectivity. According to our mechanistic studies, the key intermediate of the reaction is an organostannane (or silane)-coordinated pincer complex, which is formed from the dimetallic reagent and the corresponding pincer complex catalyst. DFT modeling studies have shown that the trimethylstannyl functionality is transferred to the propargylic substrate in a single reaction step with high allenyl selectivity. Inspection of the TS structures reveals that the trimethylstannyl group transfer is initiated by the attack of the palladium-tin sigma-bond electrons on the propargylic substrate. This is a novel mechanism in palladium chemistry, which is based on the unique topology of the pincer complex catalysts.  相似文献   

11.
We report the synthesis of Fe-NCN pincer complex as homogenous catalyst and its composite by immobilizing the complex on amino functionalized graphene oxide as a heterogeneous catalyst for Suzuki coupling reactions. Both the complex and the composite were employed in catalyzing the Suzuki-Miyaura cross-coupling reaction between the aryl halide and phenyl boronic acid in acetonitrile solvent media with Cs2CO3 as a base. Effect of substitution over aryl halide was also investigated. Immobilization of the pincer complex had advantageous recovery and reuse of the catalyst as compared to its homogenous analog with no significant decrease in the catalytic efficiency.  相似文献   

12.
Iridium pincer complex catalyzed hydrogen to deuterium exchange could be achieved using aromatic and heteroaromatic substrates. The reactions proceed under mild conditions and with high regioselectivity. The efficiency of the hydrogen isotope exchange reaction depends on the electronic properties of the pincer complex catalyst.  相似文献   

13.
Palladium pincer complex-catalyzed reaction of functionalized propargyl chloride (and mesylate) derivatives with hexamethylditin gives allenyl- and propargyl-stannane products. This catalytic activity is in sharp contrast with the reactivity of commonly used palladium(0) catalysts inducing addition of hexamethylditin to the triple bond. The product distribution of the pincer complex-catalyzed reaction is controlled by the substituent effects of the propargylic substrate: electron-withdrawing functionalities give mainly allenyl stannane products, while with electron-donating groups the main product is propargyl stannane. The catalytic reaction proceeds under very mild conditions tolerating many functionalities such as OH, OAc, NR3, and NR2Ac groups. Our mechanistic studies indicate that the key intermediate of the reaction is a monotrimethylstannane palladium pincer complex. A remarkable feature of the studied catalytic process is that the palladium catalyst does not undergo redox reactions, but its oxidation state is restricted to palladium(II). Since palladium(0) intermediates does not occur in this process, the catalyst is very stable and highly chemoselective.  相似文献   

14.
The aliphatic, phosphine-based pincer complex [(C(10)H(13)-1,3-(CH(2)P(Cy(2))(2))Pd(Cl)] (1) is a highly active Negishi catalyst, enable to quantitatively couple various electronically activated, non-activated, deactivated, sterically hindered and functionalized aryl bromides with various diarylzinc reagents within short reaction times and low catalyst loadings. Experimental observations strongly indicate that a molecular mechanism is operative with initial chloride dissociation of 1 and formation of the cationic T-shaped 14e(-) complex [(C(10)H(13)-1,3-(CH(2)P(C(6)H(11))(2))(2))Pd](+) (B), which undergoes oxidative addition of an aryl bromide (Ar'Br) to yield the cationic, penta-coordinated aryl bromide pincer complexes of type [(C(10)H(13)-1,3-(CH(2)P(Cy(2))(2))Pd(Br)(aryl')](+) (C) with the metal center in the oxidation state of +IV and the aryl unit in cis position relative to the aliphatic pincer core. Subsequent transmetalation with Zn(aryl)(2) result in the cationic diaryl pincer complexes of type [(C(10)H(13)-1,3-(CH(2)P(Cy(2))(2))Pd(aryl)(aryl')](+) (D), which reductively eliminate the coupling products, thereby regenerating the catalyst. The neutral square planar aryl pincer complex--a possible key intermediate in the catalytic cycle--was found to be reversibly formed in the reaction mixture but is not involved in the catalytic mechanism. Similarly, palladium nanoparticles as the catalytically active form of 1 could have been excluded.  相似文献   

15.
1H NMR studies using a cationic complex with a pyridine-di-imidazolylidene pincer ligand of formula [Rh(CNC)(CO)]+ revealed that this compound showed high binding affinity with coronene in CH2Cl2. The interaction between coronene and the planar RhI complex is established by means of π-stacking interactions. This interaction has a strong impact on the electron-donating strength of the pincer CNC ligand, which is increased significantly, as demonstrated by the shifting of the ν(CO) stretching bands to lower frequencies. The addition of coronene increases the reaction rate of the nucleophilic attack of methyl iodide on the rhodium (I) pincer complex, and also has a positive effect on the performance of the complex as a catalyst in the cycloisomerization of 4-pentynoic acid. These findings highlight the importance of supramolecular interactions for tuning the reactivity and catalytic activity of square-planar metal complexes.  相似文献   

16.
Cycling between molybdenum(I)-dinitrogen and molybdenum(IV)-nitride complexes was investigated under ambient reaction conditions. A kinetic study of the second-order reaction rate for the conversion of the molybdenum-dinitrogen complex into the molybdenum-nitride complex indicates that the formation of the dinitrogen-bridged dimolybdenum complex is involved in the rate-determining step. DFT calculations indicate that the molybdenum-dinitrogen complex transforms into the molybdenum-nitride complex via direct cleavage of the nitrogen-nitrogen triple bond of the bridging dinitrogen ligand of the dinitrogen-bridged dimolybdenum complex. The corresponding reaction of the molybdenum-nitride complex transforming into the molybdenum-dinitrogen complex proceeds via the ligand exchange of ammonia for dinitrogen at the dinitrogen-bridged dimolybdenum complexes. A new modified reaction pathway has been proposed based on the findings of our experimental and theoretical results.  相似文献   

17.
Fe and Ru pincer‐type catalysts are used for the racemization of benzylic alcohols. Racemization with the Fe catalyst was achieved within 30 minutes under mild reaction conditions, with a catalyst loading as low as 2 mol %. This reaction constitutes the first example of an iron‐catalyzed racemization of an alcohol. The efficiency for racemization of the Fe catalyst and its Ru analogue was evaluated for a wide range of sec‐benzylic alcohols. The commercially available Ru complex proved to be highly robust and even tolerated the presence of water in the reaction mixture.  相似文献   

18.
Li X  Chen Z  Zhao Q  Shen L  Li F  Yi T  Cao Y  Huang C 《Inorganic chemistry》2007,46(14):5518-5527
A simple synthetic route was developed for nonconjugated dendritic iridium(III) complex based on tunable pyridine-based ligands. From an intermediate 2-bromopyridyl-4-methanol, three series of polybenzyloxy dendritic pyridine-based ligands with 2-phenyl, 2-benzothienyl, and 2,4-difluorophenyl subsitituents were easily synthesized via two-step reactions (Suzuki reaction and etherifying reaction). Using these pyridine derivatives as the CwedgeN ligands, these dendritic iridium(III) complexes exhibiting tunable photoluminescence from blue to red were obtained. The photoluminescence quantum yields of these dendritic complexes in neat films increased with the increasing generation number of dendritic CwedgeN ligands. Importantly, these iridium complexes were used as dopants for successfully fabricating polymer-based electrophosphorescent light-emitting diodes (PLEDs) with the highest external quantum efficiency of 12.8%.  相似文献   

19.
A pincer‐iridium complex bearing a Lewis‐base‐free X‐type alumanyl ligand has been synthesized. X‐ray diffraction, NMR and IR spectroscopy, as well as XANES analysis confirmed its tetrahydrido‐IrV structure and Lewis acidity at the Al center as supported by DFT calculations. The resulting complex was applied as a catalyst for the transfer dehydrogenation of cyclooctane.  相似文献   

20.
Eberhard MR 《Organic letters》2004,6(13):2125-2128
[reaction: see text] The Heck reaction of phenyl halides with styrene using a series of related PCP pincer palladium(II) complexes was studied in order to evaluate the effect of ligand structure and electronics on the catalytic activity and to investigate the nature of the catalyst species. We suggest these pincer complexes are precatalysts for highly active forms of metallic palladium. This conclusion is based on kinetic studies (induction periods, sigmoidal kinetics), Hg drop tests, quantitative poisoning experiments, and NMR studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号