首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   2篇
化学   28篇
晶体学   2篇
力学   4篇
数学   2篇
物理学   19篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   12篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1969年   1篇
排序方式: 共有55条查询结果,搜索用时 437 毫秒
1.
2.
We describe a simulation of the nanoparticle trajectories in a pulsed cluster beam source. Clusters, formed by condensation of atomic vapor in a helium bath, and considered here as rigid spheres having a diameter of 1.5nm, were tracked during their travel inside the source cavity, an aerodynamic lens, and a cylindrical nozzle. Steady state supersonic laminar flow of helium is considered in an axi-symmetric geometry aiming to simulate, within some limitations, the conditions under which cluster formation takes place in a pulsed microplasma cluster source. In spite of the unsteady nature of the pulsed source, the time scale characterizing particle motion in the flow field is significantly smaller than the characteristic time constant for the evolution of gas pressure in the source. For this reason, a steady simulation can shed some light on the understanding of processes governing nanoparticle motion in a pulsed vaporization source. The extent to which the Brownian diffusion can affect the particle extraction from the source is investigated. Simulations have shown that the Brownian motion perturbs the clusters from the trajectories dictated by the carrier gas and increases the rate of cluster deposition on the source internal walls. However, it does not hinder the aerodynamic focalization produced by the lens even in nano-size cluster regime. This result is qualitatively confirmed by experiment.  相似文献   
3.
4.
Russian Journal of Applied Chemistry - Titanium dioxide (TiO2) is widely used in the paint industry as a white pigment. To reduce the high cost of TiO2, mineral fillers such as different calcites...  相似文献   
5.
Chenopodium album is a weedy annual plant in the genus Chenopodium. C. album pollen represents a predominant allergen source in Iran. The main C. album pollen allergens have been described as Che a 1, Che a 2, and Che a 3. The aim of this work was to clone the Che a 1 in Escherichia coli to establish a system for overproduction of the recombinant Che a 1 (rChe a 1). In order to clone this allergen, the pollens were subjected to RNA extraction. A full-length fragment encoding Che a 1 was prepared by polymerase chain reaction amplification of the first-strand cDNA synthesized from extracted RNA. Cloning was carried out by inserting the cDNA into the pET21b (+) vector, thereafter the construct was transformed into E. coli Top10 cells and expression of the protein was induced by IPTG. The rChe a 1 was purified using histidine tag in recombinant protein by means of Ni–NTA affinity chromatography. IgE immunoblotting, ELISA, and inhibition ELISA were done to evaluate IgE binding of the purified protein. In conclusion, the cDNA for the major allergen of the C. album pollen, Che a 1, was successfully cloned and rChe a 1 was purified. Inhibition assays demonstrated allergic subjects sera reacted with rChe a 1 similar to natural Che a 1 in crude extract of C. album pollen. This study is the first report of using the E. coli as a prokaryotic system for Che a 1 cloning and production of rChe a 1.  相似文献   
6.
There has been some substantial research about the connections between quantum chaos and quantum correlations in many-body systems. This paper discusses a specific aspect of correlations in chaotic spin models, through concurrence (CC) and quantum discord (QD). Numerical results obtained in the quantum chaos regime and in the integrable regime of spin-1/2 chains are compared. The CC and QD between nearest-neighbor pairs of spins are calculated for all energy eigenstates. The results show that, depending on whether the system is in a chaotic or integrable regime, the distribution of CC and QD are markedly different. On the other hand, in the integrable regime, states with the largest CC and QD are found in the middle of the spectrum, in the chaotic regime, the states with the strongest correlations are found at low and high energies at the edges of spectrum. Finite-size effects are analyzed, and some of the results are discussed in the light of the eigenstate thermalization hypothesis.  相似文献   
7.

This article studies buoyancy-driven natural convection of a nanofluid affected by a magnetic field within a square enclosure with an individual conductive pin fin. The effects of electromagnetic forces, thermal conductivity, and inclination angle of pin fin were investigated using non-dimensional parameters. An extensive sensitivity analysis was conducted seeking an optimal heat transfer setting. The novelty of this work lies in including different contributing factors in heat transfer analysis, rigorous analysis of design parameters, and comprehensive mathematical analysis of solution domain for optimization. Results showed that magnetic strength diminished the heat transfer efficacy, while higher relative thermal conductivity of pin fin improved it. Based on the problem settings, we also obtained the relative conductivity value in which the heat transfer is optimal. Higher sensitivity of heat transfer was, though, noticed for both magnetic strength and fin thermal conductivity in comparison to fin inclination angle. Further studies, specifically with realistic geometrical configurations and heat transfer settings, are urged to translate current findings to industrial applications.

  相似文献   
8.
Journal of Thermal Analysis and Calorimetry - The aim of this paper is to achieve a smaller and cheaper heat exchanger with similar performance. To fulfill this demand, ANSYS-Fluent software and...  相似文献   
9.
The rate of fluid transport in partially saturated porous media depends on the media's instantaneous (function of saturation) relative permeability, kr(S), and capillary pressure, Pc(S). Obtaining functional relationships for relative permeability and capillary pressure is only possible via experimentation or expensive microscale simulations, and needs to be repeated for different media having different fiber diameters, thicknesses, or porosities. In this concern, we conducted series of 3-D microscale simulations to investigate the effect of the above parameters on the relative permeability and capillary pressure of fibrous porous sheets. The results of our parameter study are utilized to develop general expressions for kr(S) and Pc(S). Our general expressions are based on the existing empirical correlations of two-phase flow in granular media, and can easily be included in macroscale fluid transport equations to predict the rate of fluid release from partially saturated fibrous sheets in a time and cost-effective manner.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号