首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   5篇
化学   51篇
物理学   5篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   4篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   6篇
  2010年   1篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   9篇
  2003年   2篇
  2002年   1篇
  1992年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有56条查询结果,搜索用时 109 毫秒
1.
Chiral metal–organic frameworks (MOFs) have gained rising attention as ordered nanoporous materials for enantiomer separations, chiral catalysis, and sensing. Among those, chiral MOFs are generally obtained through complex synthetic routes by using a limited choice of reactive chiral organic precursors as the primary linkers or auxiliary ligands. Here, we report a template-controlled synthesis of chiral MOFs from achiral precursors grown on chiral nematic cellulose-derived nanostructured bio-templates. We demonstrate that chiral MOFs, specifically, zeolitic imidazolate framework (ZIF), unc -[Zn(2-MeIm)2, 2-MeIm=2-methylimidazole], can be grown from regular precursors within nanoporous organized chiral nematic nanocelluloses via directed assembly on twisted bundles of cellulose nanocrystals. The template-grown chiral ZIF possesses tetragonal crystal structure with chiral space group of P41, which is different from traditional cubic crystal structure of I-43 m for freely grown conventional ZIF-8. The uniaxially compressed dimensions of the unit cell of templated ZIF and crystalline dimensions are signatures of this structure. We observe that the templated chiral ZIF can facilitate the enantiotropic sensing. It shows enantioselective recognition and chiral sensing abilities with a low limit of detection of 39 μM and the corresponding limit of chiral detection of 300 μM for representative chiral amino acid, D- and L- alanine.  相似文献   
2.
Focused-electron-beam-induced processing (FEBIP), a resist-free additive nanomanufacturing technique, is an actively researched method for “direct-write” processing of a wide range of structural and functional nanomaterials, with high degree of spatial and time-domain control. This article attempts to critically assess the FEBIP capabilities and unique value proposition in the context of processing of electronics materials, with a particular emphasis on emerging carbon (i.e., based on graphene and carbon nanotubes) devices and interconnect structures. One of the major hurdles in advancing the carbon-based electronic materials and device fabrication is a disjoint nature of various processing steps involved in making a functional device from the precursor graphene/CNT materials. Not only this multi-step sequence severely limits the throughput and increases the cost, but also dramatically reduces the processing reproducibility and negatively impacts the quality because of possible between-the-step contamination, especially for impurity-susceptible materials such as graphene. The FEBIP provides a unique opportunity to address many challenges of carbon nanoelectronics, especially when it is employed as part of an integrated processing environment based on multiple “beams” of energetic particles, including electrons, photons, and molecules. This avenue is promising from the applications’ prospective, as such a multi-functional (electron/photon/molecule beam) enables one to define shapes (patterning), form structures (deposition/etching), and modify (cleaning/doping/annealing) properties with locally resolved control on nanoscale using the same tool without ever changing the processing environment. It thus will have a direct positive impact on enhancing functionality, improving quality and reducing fabrication costs for electronic devices, based on both conventional CMOS and emerging carbon (CNT/graphene) materials.  相似文献   
3.
4.
Surface behavior of the pH- and thermoresponsive amphiphilic ABCBA pentablock copolymer has been studied with respect to the environmental conditions. We demonstrate that the pentablock copolymer poly((diethylaminoethyl methacrylate)-b-(ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)-b-(diethylaminoethyl methacrylate)) possesses reversible temperature changes at the air-water interface in a narrow pH range of the water subphase. Significant diversity in the surface morphology of pentablock copolymer monolayers at different pH and temperatures observed were related to the corresponding reorganization of central and terminal blocks. Remarkable reversible variations of the surface pressure observed for the Langmuir monolayers at pH 7.4 in the course of heating and cooling between 27 and 50 degrees C is associated with conformational transformations of terminal blocks crossing the phase line in the vicinity of the lower critical solution temperature point. The observed thermoresponsive surface behavior can be exploited for modeling of the corresponding behavior of pentablock copolymers adsorbed onto various biointerfaces for intracellular delivery for deeper understanding of stimuli-responsive transformations relevant to controlled drug and biomolecules release and retention.  相似文献   
5.
An amphiphilic heteroarm star polymer containing 12 alternating hydrophobic/hydrophilic arms of polystyrene (PS) and poly(acrylic acid) (PAA) connected to a well-defined rigid aromatic core was studied at the air-water and the air-solid interfaces. At the air-water interface, the molecules spontaneously form pancakelike micellar aggregates which measure up to several microns in diameter and 5 nm in thickness. Upon reduction of the surface area per molecule to 7 nm2, the two-dimensional micelles merged into a dense monolayer. We suggest that confined phase separation of dissimilar polymer arms occurred upon their segregation on the opposite sides of the rigid disklike aromatic core, forcing the rigid cores to adopt a face-on orientation with respect to the interface. Upon transfer onto solid supports the PS chains face the air-film interface making it completely hydrophobic, and the PAA chains were found to collapse and form a thin flattened underlayer. This study points toward new strategies to create large 2D microstructures with facial amphiphilicity and suggests a profound influence of star molecular architecture on the self-assembly of amphiphiles at the air-water interface.  相似文献   
6.
7.
Multicompartmental responsive microstructures with the capability for the pre‐programmed sequential release of multiple target molecules of opposite solubility (hydrophobic and hydrophilic) in a controlled manner have been fabricated. Star block copolymers with dual‐responsive blocks (temperature for poly(N‐isopropylacrylamide) chains and pH for poly(acrylic acid) and poly(2‐vinylpyridine) arms) and unimolecular micellar structures serve as nanocarriers for hydrophobic molecules in the microcapsule shell. The interior of the microcapsule can be loaded with water‐soluble hydrophilic macromolecules. For these dual‐loaded microcapsules, a programmable and sequential release of hydrophobic and hydrophilic molecules from the shell and core, respectively, can be triggered independently by temperature and pH variations. These stimuli affect the hydrophobicity and chain conformation of the star block copolymers to initiate out‐of‐shell release (elevated temperature), or change the overall star conformation and interlayer interactions to trigger increased permeability of the shell and out‐of‐core release (pH). Reversing stimulus order completely alters the release process.  相似文献   
8.
A single monolayer of CdSe/ZnS quantum dots (QDs) has been encapsulated into a 60 nm free-suspended layer-by-layer (LbL) film. The QD monolayer showed a low light-emission within this film in contact with supporting solid substrates, but the manifold increase of photoluminescencence intensity was observed when the film was lifted and freely suspended over the microfabricated cylindrical cavities. This phenomenon was discussed in relationship with the effect of the elimination of the surface quenching enhanced by optical reflection from highly reflective silicon cavities. We suggest that a significant increase of the photoluminescence intensity of QD monolayers suspended over the microfabricated array can be interesting for future diagnostic and sensing applications.  相似文献   
9.
The photoluminescence of CdSe/ZnS quantum dots (QDs) in different configurations at solid surfaces (glass, silicon, PDMS, and metals) is considered for three types of organization: QDs directly adsorbed on solid surfaces, separated from the solid surface by a nanoscale polymer film with different thickness, and encapsulated into a polymer film. The complete suppression of photoluminescence for QDs on conductive metal surfaces (copper, gold) indicated a strong quenching effect. The temporal variation of the photoluminescent intensity on other substrates (glass, silicon, and PDMS) can be tuned by placing the nanoscale (3-50 nm) LbL polymer film between QDs and the substrate. The photooxidation and photobleaching processes of QD nanoparticles in the vicinity of the solid surface can be tuned by proper selection of the substrate and the dielectric nanoscale polymer film placed between the substrate and QDs. Moreover, the encapsulation of QD nanoparticles into the polymer film resulted in a dramatic initial increase in the photoemission intensity due to the accelerated photooxidation process. The phenomenon of enhanced photoemission of QDs encapsulated into the ultrathin polymer film provides not only the opportunity for making flexible, ultrathin, QD-containing polymer films, transferable to any microfabricated substrate, but also improved light emitting properties.  相似文献   
10.
We study the surface behavior of the asymmetric amphiphilic heteroarm poly(ethylene oxide) (PEO)/polystyrene (PS) star polymer on solid substrate. These star polymers differ in both architecture (four- and three-arm molecules, PEO-b-PS(3) and PEO-b-PS(2)) and in the length of PS chains (molecular weight from about 10 000 up to 24 000). We observed that, for a given chemical composition with a predominant content of hydrophobic blocks, the compression behavior of the PS domain structure controls the surface behavior and the final morphology of the monolayers. New features of the surface behavior of star-block copolymers are high stretching of the PS arms from the interface and enhanced stability of the circular PS domain structure, even at high compression. We suggest that for asymmetric star-block copolymers both architecture and chemical composition heavily favor the formation of highly curved interfaces and, thus, more stable circular domain structure with stretched PS arms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号