首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new amphiphilic ABC triblock copolymer (poly(ethylene oxide)-poly(dimethyl siloxane)-poly(methyl oxazoline)) has been synthesized and demonstrated to form vesicular structures with asymmetric membranes in aqueous media.  相似文献   

2.
Formation of silver nanoparticles has been developed based on a template technique. Amphiphilic star-block copolymers employed as single molecule template, utilizing the coordination of Ag+ ions with carboxyl groups in the core of the star-block copolymer. Silver nanoparticles have been prepared by the addition of chemical reductant, e.g., NaBH4. The solution of the resultant nanosphere composites showed yellow due to the surface plasmon resonance. These composites were soluble in organic solvents, because hydrophobic corona of the star-block copolymer protected the fabricated silver nanoparticles from aggregation.  相似文献   

3.
The morphologies of star-block copolymer (AB)n and (BA)n in a selective solvent for A-block are investigated by using dissipative particle dynamics. For a star-block copolymer of (BA)n type with a large enough arm number n, since the solvophobic B-blocks are situated in the inner part of the star, it behaves as a unimolecular micelle with the B-block core and A-block hairy corona. These types of star copolymers repel each other, thus it is quite difficult to form multimolecular micelles. On the other hand, for a star-block copolymer of (AB)n type, a few aggregative domains develop on the outer rim of the molecule. As the length of B-blocks or the repulsive interaction between B-blocks and solvents is increased, the tendency of B-blocks to associate within the star increases and thus the average number of aggregative domains declines. Owing to the exposure of B-domains, (AB)n type star-blocks tend to form micelles with morphology different from typical micelles. Upon performing simulations for solutions with multiple stars, we have shown that the single molecular conformation may greatly affect the resulting morphology of the supramolecular structure, such as connected-star aggregate, multicore micelle, segmented worm, and core-lump micelle.  相似文献   

4.
5.
Russian Chemical Bulletin - An amphiphilic fluoroorganosiloxane copolymer designed for a surface modification of epoxy resin by fluorine-containing fragments has been synthesized. The copolymer...  相似文献   

6.
Amphiphilic di- and triblock copolymers having different hydrophilic-to-hydrophobic block length ratio were synthesized using ATRP. The self-assembly behavior of these AB and ABA block copolymers consisting of poly(n-butyl methacrylate) (B) and poly(2,2-(dimethylaminoethyl methacrylate) (A) was investigated using a combination of dynamic light scattering, negative-stain transmission electron microscopy, cryoelectron microscopy, and atomic force microscopy. Two populations of self-organized structures in aqueous solution, micelles and compound micelles, were detected for diblock copolymers. Triblock copolymers assembled into vesicular structures of uniform sizes. Furthermore it was found that these vesicles tended to compensate the high curvature by additional organization of the polymer chains outside of the membrane. The chain hydrophilicity of the polymers appeared to have a critical impact on the self-assembly response toward temperature change. The self-reorganization of the polymers at different temperatures is discussed.  相似文献   

7.
Micellization behavior of (AB)n type star-block copolymer in a selective solvent for its outer block is investigated by using a Brownian dynamics simulation. Micellar properties are compared in terms of the arm number (n) of star-block copolymer. It is observed that the critical micelle concentration (cmc) shows a minimum when the cmc is plotted against the arm number. The star-block copolymer with longer soluble block shows the cmc minimum at smaller arm number than that with shorter soluble block. Although the star-block copolymer with multiple arms forms more compact core as compared to diblock copolymer, the average aggregation number is inversely proportional to the arm number (approximately 1/n), which implies that the micelle size is invariant with the arm number. Theoretical predictions based on a simple mean field theory agree qualitatively well with the simulation results.  相似文献   

8.
Micellar behaviors in 2D and 3D lattice models for amphiphilic comb-like copolymers in water phase and in water/oil mixtures were simulated. A dynamical algorithm together with chain reptation movements was used in the simulation. Three-dimension displaying program was pro-grammed and free energy was estimated by Monte Carlo technigue. The results demonstrate that reduced interaction energy influences morphological structures of micelle and emulsion stems greatly; 3D simulation showing can display more direct images of morphological structures; the amphiphilic comb-like polymers with a hydrophobic main chain and hydrophilic side chains have lower energy in water than in oil.  相似文献   

9.
N3-苯丙氨酸与嵌段共聚物聚乙二醇-b-聚炔丙基缩水甘油(MPEO-b-PGPE)发生"click"反应,合成了具有光学活性的两亲嵌段共聚物聚乙二醇-B-聚L-苯丙氨酸三唑基缩水甘油(MPEO-b-PGTP),用1H-NMR和元素分析对其结构和组成进行表征.并对其自组装行为进行研究,滴体积法测定MPEO-b-PGTP溶...  相似文献   

10.
A series of fluoroalkyl end-capped diblock copolymers of poly[2-(N,N-dimethylamino)ethyl methacrylate] (PDMAEMA or PDMA) and poly[2-(N,N-diethylamino)ethyl methacrylate] (PDEAEMA or PDEA) have been synthesized via oxyanion-initiated polymerization, in which a potassium alcoholate of 4,4,5,5,6,6,7,7,7-nonafluoro-1-heptanol (NFHOK) was used as an initiator. The chemical structures of the NFHO-PDMA-b-PDEA and NFHO-PDEA-b-PDMA depended on the addition sequence of the two monomers and the feeding molar ratios of [DMA] to [DEA] during the polymerization process. These copolymers have been characterized by (1)H NMR and (19)F NMR spectroscopy and gel permeation chromatography (GPC). The aggregation behavior of these copolymers in aqueous solutions at different pH media was studied using a combination of surface tension, fluorescence probe, and transmission electron microscopy (TEM). Both diblock copolymers exhibited distinct pH/temperature-responsive properties. The critical aggregation concentrations (cacs) of these copolymers have been investigated, and the results showed that these copolymers possess excellent surface activity. Besides, these fluoroalkyl end-capped diblock copolymers showed pH-induced lower critical solution temperatures (LCSTs) in water. TEM analysis indicated that the NFHO-PDMA(30)-b-PDEA(10) diblock copolymers can self-assemble into the multicompartment micelles in aqueous solutions under basic conditions, in which the pH value is higher than the pKa values of both PDMA and PDEA homopolymers, while the NFHO-PDEA(10)-b-PDMA(30) diblock copolymers can form flowerlike micelles in basic aqueous solution.  相似文献   

11.
In this article, we report the self‐assembly of flocculation‐resistant multimolecular micelles with thermoresponsive corona from novel dendritic heteroarm star copolymers. The micelles have a core‐shell‐corona structure at room temperature according to pyrene probe fluorescence spectrometry, proton nuclear magnetic resonance (1H NMR), transmission electron microscopy, and dynamic light scattering measurements. Increasing the temperature above the lower critical solution temperature (LCST), the micelles show high flocculation‐resistant ability resulting from a structure transition from core‐shell‐corona to core‐shell confirmed by a quantitative variable temperature 1H NMR analysis method using potassium hydrogen phthalate as an external standard. A big volume change of the micelles is observed during the LCST transition. The drug loading and temperature‐dependent release properties of the micelles are also investigated by using coumarin 102 as a model drug, which displays a rapid drug release at a temperature above the LCST. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

12.
We report the first synthesis of amphiphilic four-arm star diblock copolymers consisting of styrene (STY) and acrylic acid (AA) made using reversible addition-fragmentation chain transfer (RAFT; Z group approach with no star-star coupling). The polymerization proceeded in an ideal "living" manner. The size of the poly(AA(132)-STY(m)4 stars in DMF were small and close to 7 nm, suggesting no star aggregation. Slow addition of water (pH = 6.8) to this mixture resulted in aggregates of 15 stars per micelle with core-shell morphology. Calculations showed that the polyAA blocks were slightly extended with a shell thickness of 15 nm. Treatment of these micelles with piperidine to cleave the block arms from the core resulted in little or no change on micelle size or morphology, but the polyAA shell thickness was close to 29 nm (33 nm is the maximum at full extension) suggesting a release of entropy when the arms are detached from the core molecule. In this work we showed through the use of star amphiphilic polymers that the micelle size, aggregation number, and morphology could be controlled.  相似文献   

13.
Influence of molecular architecture on phase behavior of graft copolymer melts was studied by using a reciprocal-space self-consistent filed theory (SCFT). The phase diagrams were examined as functions of the architectural parameters describing the graft copolymers (i.e., the number of grafts and the position of first junction). In comparison with the well-known phase diagram of diblock copolymers, the phase diagrams of the graft copolymers are asymmetric. When the number of grafts or the position of first junction varies, the boundaries of order-order transitions have shifts due to the variation in the chain stretching energy. The change in molecular architecture also significantly alters the domain spacing of ordered structures but has weak impact on the density distributions of graft copolymers. For comparison of the theoretical predictions with the existing experimental results, the phase diagrams of graft copolymers were also calculated at strong segregation. The SCFT calculations can accurately capture the characteristics of the phase behavior of graft copolymer melts.  相似文献   

14.
This article describes the solution behavior of model amphiphilic linear‐dendritic ABA block copolymers that self‐assemble in aqueous media and form micelles with highly branched nanoporous cores. The materials investigated are constructed of poly(ethylene glycol), PEG, with molecular weight 5,000 or 11,000 as the water‐soluble B block and poly(benzyl ether) monodendrons [G] of second and third generation as the hydrophobic A fragments. The process of self‐assembly in aqueous media and the character of the micellar core are investigated by fluorescence spectroscopy using pyrene as the molecular probe. The data obtained by different methods indicate that the critical micelle concentrations (cmc) for these systems are between 1.1 × 10−5 and 2.0 × 10−5 mol/L for [G‐2]‐PEG5000‐[G‐2] and between 7.08 × 10−6 and 7.94 × 10−6 mol/L for [G‐3]‐PEG11000‐[G‐3]. It is found that the ratio of the first and third vibronic bands (I1/I3 ) in the fluorescence spectrum of the encapsulated pyrene changes from 1.77 to 1.32 when the concentration of [G‐2]‐PEG5000‐[G‐2] increases from 1.1 × 10−6 mol/L to 1.1 × 10−4 mol/L. For [G‐3]‐PEG11000‐[G‐3] these changes are between 1.77 and 1.17 in the same concentration range. The hybrid copolymers form host‐guest complexes with several polyaromatic compounds (phenanthrene, pyrene, perylene and fullerene, C60) that are stable over extended periods of time (more than 12 months). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2711–2727, 2000  相似文献   

15.
The purpose of this study is to ascertain the relationship between the structure of an amphiphilic nonionic polymer and its toxicity for cells (cytotoxicity) growing in a culture. To this end, 16 polymers of different architectures and chemical structures are tested, namely, linear triblock copolymers of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronics); diblock copolymers of propylene oxide, ethylene oxide, and hyperbranched polyglycerol; alternating and diblock copolymers of ethylene oxide and dimethylsiloxane; and two surfactants containing linear (Brij-35) or branched (Triton X-100) aliphatic chains. Polymer-cell interaction is assayed in a culture medium in the absence of serum. Effective concentrations of the polymers causing 50% cell death, EC50, vary within three orders of magnitude. Toxic concentrations of the alternating copolymer, Triton X-100, and Brij-35 are lower than their CMC values. In contrast, all block copolymers, regardless of their chemical structures, become toxic at concentrations above the CMC; that is, they acquire cytotoxicity only in the micellar form. The EC50 values of the copolymers depend on their hydrophilic-liphophilic balance (HLB) through the following empirical formula: EC50 × 106 = 8.71 × HLB2.1. This relationship makes it possible to predict the cytotoxic concentration region of a block copolymer of a known structure.  相似文献   

16.
Amphiphilic comb polymers were prepared through grafting poly(ethylene glycol) methyl ether (MPEG 2000) onto acrylic and methacrylic copolymers. The graft copolymers were purified from unreacted MPEG by partition chromatography on methanol pretreated fibrous cellulose using ethyl acetate and methanol as eluents. The separation was found to depend on the water contents of the cellulose and the eluents. It is proposed that one parameter of importance for the chromatographic separation is the formation of hydrated inverted micelles. The amphiphilic comb polymers were shown by gel chromatography on Sepharose to form high molecular weight aggregates in water. On addition of sodium lauryl sulphate or inorganic salts to the eluent at low ionic strengths these aggregates dissociated and were fractionated by the gel. It was also shown that on GPC in THF solution on Styragel columns the polymers exhibited apparent molecular weights equal or smaller than those of the corresponding backbones. This effect may be a consequence of the graft copolymers having relatively small hydrodynamic volumes, and this idea is supported by the fact that their intrinsic viscosities generally were lower than those of the backbones. However, adsorption on the Styragel columns also may be of importance.  相似文献   

17.
Amphiphilic star-block copolymers based on poly(3-hydroxybutyrate) with adamantyl end-functionalization were synthesized via anionic ring-opening polymerization and alkyne-azide "Click Chemistry" coupling. In aqueous medium, the copolymers self-assembled into nanogel-like large compound micelles, and transformed into vesicular nanostructures under the direction of host-guest interaction between the adamantyl end and dimethyl-β-cyclodextrin.  相似文献   

18.
The stabilization of a bivalent oxidation state in cobalt complexes of phenolate-based asymmetric tridentate ligands with iodo and bromo substituents is studied. The complexes [CoII(LIA)2].2CH3OH (1) and [CoII(LBrA)2].CH3OH (2) were characterized by means of several spectroscopic and spectrometric techniques. The molecular structure of 1 was determined by diffractometric analysis and reveals the cobalt(II) ion in a distorted-octahedral geometry. The centrosymmetric metal ion adopts a local D2h symmetry and is surrounded by facially coordinated ligands. Equivalent donor sets in both ligands are trans to each other, and DFT calculations suggest that the fac-trans configuration is favored by a small margin when compared to the fac-cis isomers. Both DFT calculations and EPR spectroscopy agree with a high-spin S=3/2 electronic configuration given by [ag1, b1g1, ag1, b2g2, b3g2]. This oxidation state was indirectly observed by the lack of a ppiphenolate-->dsigma*cobalt(III) charge-transfer band, which is found between 430 and 470 nm for similar cobalt(III) species. On the basis of the geometrical preferences and the oxidation state of archetypical 1 and 2, two metallosurfactants [CoII(LI-ODA)2] (3) and [CoII(LI-NOBA)2].CH2Cl2 (4) were obtained. The redox chemistry of 1-4 is marked by metal- and ligand-centered activity with several follow up processes and film formation on the electrode. Both metallosurfactants exhibit amphiphilic properties and organization, as shown by compression isotherms and Brewster angle microscopy but exhibit dissimilar collapse mechanisms; whereas 3 collapses at constant pressure, 4 exhibits a constant-area collapse. Langmuir-Blodgett films are readily obtained and were characterized by equilibrium contact angle and atomic force microscopy.  相似文献   

19.
Studies on interactions between amphiphilic block copolymers and lipid membranes have been focused traditionally on ABA triblock copolymers of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide), widely due to their commercial availability. However, new architectures of amphiphilic block copolymer have been synthesized in recent years partially taking advantage of new polymerization techniques. This review focuses on amphiphilic block copolymers with potential biological activity and on model membrane systems used for studying interactions with such block copolymers. Experimental methods to study block copolymer–phospholipid interactions in Langmuir monolayers, liposomes, and planar bilayers are summarized. This work is intended to convey a better understanding of amphiphilic block copolymers used for in vitro and in vivo experiments in medicine and pharmacy. Recent developments and open questions are addressed.  相似文献   

20.
The synthesis of non linear block copolymers of the type (BA)2B (3-miktoarm star copolymer), (BA)3B (4-miktoarm star copolymer), (BA)3B(AB)3 (super H-shaped), B2AB2 (H-shaped) and (B,A)A(B,A) (π-shaped), where A is polyisoprene 1,4 and B is polystyrene was performed using anionic polymerization techniques and suitable chlorosilane chemistry. Characterization data showed that the samples are molecularly and compositionally homogeneous. TEM, SAXS and SANS were used to study the microphase behavior of the copolymers. For all samples, the results were analyzed in the frame of the theoretical predictions given by Milner and taking into account the results from previous studies on the A2B and A3B miktoarm star copolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号