首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
物理学   4篇
  2020年   2篇
  2012年   1篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Tomac  Mehmet N. 《显形杂志》2020,23(3):369-372
Journal of Visualization -  相似文献   
2.
Tomac  Mehmet N. 《显形杂志》2020,23(3):373-375
Journal of Visualization -  相似文献   
3.
This paper presents a theoretical study of active vibration isolation on a two degree of freedom system. The system consists of two lumped masses connected by a coupling spring. Both masses are also attached to a firm reference base by a mounting spring. The lower mass is excited by a point force. A reactive control force actuator is used between the two masses in parallel with the coupling spring. Both masses are equipped with an absolute velocity sensor. The two sensors and the actuator are used to implement velocity feedback control loops to actively isolate the upper mass from the vibrations of the lower mass over a broad range of frequencies. The primary concern of the study is to determine what type of velocity feedback configuration is suitable with respect to the five parameters that characterise the system (the three spring stiffnesses and the two masses). It is shown analytically that if the ratio of the lower mounting spring stiffness to the lower mass is larger than the ratio of the upper mounting spring stiffness to the upper mass (supercritical system), feeding back the absolute upper mass velocity to the reactive force actuator results in an unconditionally stable feedback loop and the vibration isolation objective can be fully achieved without an overshot at higher frequencies. In contrast, if the ratio of the lower mounting spring stiffness to the lower mass is smaller than the ratio of the upper mounting spring stiffness to the upper mass (subcritical system), the upper mass velocity feedback is conditionally stable and the vibration isolation objective cannot be accomplished in a broad frequency band. For subcritical systems a blended velocity feedback is proposed to stabilise the loop and to improve the broad-band vibration isolation effect. A simple inequality is introduced to derive the combinations between the two error velocities that guarantee unconditionally stable feedback loops.  相似文献   
4.
This study is concerned with the analysis and design of a tuneable vibration absorber, which is composed by a flexible beam with a clamping block in the middle and two masses symmetrically mounted at the two ends. The free length of the beam is used to accommodate piezoelectric strain actuators. The two masses at the ends are equipped with inertial accelerometers. This arrangement is used to generate two independent acceleration feedback control loops that produce virtual mass effects, which shift the absorbing frequency of the device. Another arrangement is also studied where the two accelerometer outputs are time-integrated twice in order to implement displacement feedback loops that change the beam stiffness to shift the characteristic frequency of the device. The two feedback approaches are first analysed theoretically, using a mobility-impedance model, and then experimentally on a prototype absorber unit. The stability of the feedback loops is studied using the Nyquist criterion in order to estimate the limits on the tuneable range of frequencies which are set by the maximum stable feedback gains. The study indicates that the stability margins for the acceleration feedback loops substantially depend on the application of an appropriate low-pass filter. On the contrary, the implementation of displacement feedback gives better stability margins.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号