首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   1篇
化学   41篇
物理学   1篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2012年   5篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   7篇
  2003年   4篇
  2002年   2篇
  1996年   1篇
排序方式: 共有42条查询结果,搜索用时 280 毫秒
1.
2.
A new synthetic procedure has been developed in Mn cluster chemistry involving reductive aggregation of permanganate (MnO4-) ions in MeOH in the presence of benzoic acid, and the first products from its use are described. The reductive aggregation of NBu(n)4MnO4 in MeOH/benzoic acid gave the new 4Mn(IV), 8Mn(III) anion [Mn12O12(OMe)2(O2CPh)16(H2O)2]2-, which was isolated as a mixture of two crystal forms (NBu(n)4)2[Mn12O12(OMe)2(O2CPh)16(H2O)2].2H2O.4CH2Cl2 (1a) and (NBu(n)4)2[Mn12O12(OMe)2(O2CPh)16(H2O)2].2H2O.CH2Cl2 (1b). The anion of 1 contains a central [Mn(IV)4(mu3-O)2(mu-O)2(mu-OMe)2]6+ unit surrounded by a nonplanar ring of eight Mn(III) atoms that are connected to the central Mn4 unit by eight bridging mu3-O2- ions. This compound is very similar to the well-known [Mn12O12(O2CR)16(H2O)4] complexes (hereafter called "normal Mn12"), with the main difference being the structure of the central cores. Longer reaction times (approximately 2 weeks) led to isolation of polymeric [Mn(OMe)(O2CPh)2]n2, which contains a linear chain of repeating [Mn(III)(mu-O2CPh)2(mu-OMe)Mn(III)] units. The chains are parallel to each other and interact weakly through pi-stacking between the benzoate rings. When KMnO4 was used instead of NBu(n)4MnO4, two types of compounds were obtained, [Mn12O12(O2CPh)16(H2O)4] (3), a normal Mn12 complex, and [Mn4O2(O2CPh)8(MeOH)4].2MeOH (4.2MeOH), a new member of the Mn4 butterfly family. The cyclic voltammogram of 1 exhibits three irreversible processes, two reductions and one oxidation. One-electron reduction of 1 by treatment with 1 equiv of I- in CH2Cl2 gave (NBu(n)4[Mn12O12(O2CPh)16(H2O)3].6CH2Cl2 (5.6CH2Cl2), a normal Mn12 complex in a one-electron reduced state. The variable-temperature magnetic properties of 1, 2, and 5 were studied by both direct current (dc) and alternating current (ac) magnetic susceptibility measurements. Variable-temperature dc magnetic susceptibility studies revealed that (i) complex 1 possesses an S = 6 ground state, (ii) complex 2 contains antiferromagnetically coupled chains, and (iii) complex 5 is a typical [Mn12]- cluster with an S = 19/2 ground state. Variable-temperature ac susceptibility measurements suggested that 5 and both isomeric forms of 1 (1a,b) are single-molecule magnets (SMMs). This was confirmed by the observation of hysteresis loops in magnetization vs dc field scans. In addition, 1a,b, like normal Mn12 clusters, display both faster and slower relaxing magnetization dynamics that are assigned to the presence of Jahn-Teller isomerism.  相似文献   
3.
The compound [CeIVMnIII8O8(O2CMe)12(H2O)4].4H2O (1.4H2O) has been obtained from a template synthesis involving the reaction of the chain polymer {[MnIII(OH)(O2CMe)2] .(MeCO2H).(H2O)}n (3) with Ce(IV). Compound 1 contains a MnIII8 loop inside which is held the Ce(IV) ion by the bridging oxide ions. Magnetization and magnetic susceptibility studies establish that 1 has an S = 16 spin ground state, the largest yet for a Mn cluster, and displays the slow magnetization relaxation and hysteresis behavior of a single-molecule magnet (SMM). It is thus the highest spin Mn SMM discovered to date.  相似文献   
4.
The reaction of [Mn(O2CMe)2] · 4H2O with pdH2 (1,3-propanediol) or mpdH2 (2-methyl-1,3-propanediol) in the presence of NaN3 in MeCN/py (py = pyridine) results in the formation of two new one-dimensional coordination polymers composed of a [MnIII6MnII114-O)83-N3)4]25+ octahedral unit. The peripheral ligation is completed by pd2? (or mpd2?), acetate, pyridine and μ-1,3-N3? ligands. The latter bridges each Mn17 unit to its neighboring one, resulting in the formation of the two 1-D coordination polymers. Variable-temperature dc magnetic susceptibility studies indicate the existence of predominantly ferromagnetic interactions and a resulting giant ground state spin within the Mn17 units and intermolecular antiferromagnetic exchange interactions between the neighboring Mn17 units that result in diamagnetic ground spin states for both polymeric compounds.  相似文献   
5.
The combined use of the anion of phenyl(2-pyridyl)ketone oxime (ppko(-)) and azides (N(3)(-)) in nickel(II) carboxylate chemistry has afforded two new Ni(II)(5) clusters, [Ni(5)(O(2)CR')(2)(N(3))(4)(ppko)(4)(MeOH)(4)] [R' = H (1), Me (2)]. The structurally unprecedented {Ni(5)(μ-N(3))(2)(μ(3)-N(3))(2)}(6+) cores of the two clusters are almost identical and contain the five Ni(II) atoms in a bowtie topology. Two N(3)(-) ions are end-on doubly bridging and the other two ions end-on triply bridging. The end-on μ(3)-N(3)(-) groups link the central Ni(II) atoms with the two peripheral metal ions on either side of the molecule, while the Ni···Ni bases of the triangles are each bridged by one end-on μ-N(3)(-) group. Variable-temperature, solid-state direct- (dc) and alternating-current (ac) magnetic susceptibility, and magnetization studies at 2.0 K were carried out on both complexes. The data indicate an overall ferromagnetic behavior and an S = 5 ground state for both compounds. The ac susceptibility studies on 1 reveal nonzero, frequency-dependent out-of-phase (χ(M)") signals at temperatures below ~3.5 K; complex 2 reveals no χ(M)" signals. However, single-crystal magnetization versus dc field scans at variable temperatures and variable sweep rates down to 0.04 K on 1 reveal no noticeable hysteresis loops, except very minor ones at 0.04 K assignable to weak intermolecular interactions propagated by nonclassical hydrogen bonds.  相似文献   
6.
Molecular Diversity - Three known organo-antimony(III)–copper(I), mixed-metal small bioactive molecules (SBAMs) of formula [Cu(tpSb)3Cl] (1), [Cu2(tpSb)4Br2] (2) and [Cu2(tpSb)4I2] (3)...  相似文献   
7.
The syntheses of the first mixed-metal CeIVMnIV complexes are reported. [CeMn2O3(O2CMe)(NO3)4(H2O)2(bpy)2](NO3) (1; bpy=2,2'-bipyridine) was obtained from the reaction of Mn(NO3)2.xH2O and bpy with (NH4)2Ce(NO3)6 in a 1:1:2 molar ratio in 25% aqueous acetic acid. The complexes [CeMn6O9(O2CR)9(X)(H2O)2]y+ (R=Me, X=NO3-, y=0 (2); R=Me, X=MeOH, y=+1 (3); R=Et, X=NO3-, y=0 (7)) were obtained from reactions involving a [Mn(O2CR)2].4H2O/CeIV ratio of approximately 1:1.5 in concentrated aqueous carboxylic acid. A related reaction in less-concentrated aqueous acetic acid and in the presence of L (where L=2-hydroxy-6-methylpyridine (mhpH), 2-pyrrolidinone (pyroH), or pyridine (py)) gave [Ce3Mn2O6(O2CMe)6(NO3)2(L)a(H2O)b] (L=mhpH, a=4, b=0 (4); L=pyroH, a=2, b=3 (5)) and {{(pyH)3[Ce3Mn2O6(O2CMe)7.5(NO3)3].(HO2CMe)0.5.(H2O)2}2(NO3)}n (6), respectively. Solid-state magnetic susceptibility (chiM) data for compounds 1, 4, and 5 were fit to the theoretical chiMT versus T expression for a MnIV2 complex derived using the isotropic Heisenberg spin Hamiltonian (H=-2J?1? 2) and the Van Vleck equation. The obtained fit parameters were (in the format J, g) 1, -45.7(3) cm(-1), 1.95(5); 4, -0.40(10) cm(-1), 2.0(1); and 5, -0.34(10) cm(-1), 2.0(1), where J is the exchange interaction constant between the two MnIV ions. The data for compound 3 were fit by a matrix diagonalization method that gave J1=-5.8 cm(-1), J2=-0.63 cm(-1), J3 approximately 0, and g=2.0(1), where J1 and J2 are the exchange interactions for the [MnIV2O2(Omicron2CMe)] and [MnIV2O(Omicron2CMe)2] units, respectively, and J3 for a uniform next-nearest-neighbor interaction. Theoretical estimates of the exchange constants in compounds 1 and 3 obtained with the ZILSH method were in excellent and good agreement, respectively, with the values obtained from fits of the magnetization data. The difference for 3 is assigned to the presence of the Ce4+ ion, and atomic bond indices obtained from the ZILSH calculations were used to rationalize the values of the various exchange constants based on metal-ligand bond strengths.  相似文献   
8.
A large [Mn10Na]4 loop-of-loops aggregate was prepared from the use of 1,3-propanediol (pdH2) in manganese carboxylate chemistry. It is constructed from four [Mn10(mu3-O)2(O2CMe)13(pd)6(py)2]- loops linked through Na+ ions and exhibits a saddlelike topology. Magnetic characterization showed that the Mn10 loop has an S approximately 4 ground-state spin and displays frequency-dependent in-phase and out-of-phase alternating current signals and also hysteresis loops that, however, are not typical of single-molecule magnets because of the existence of intermolecular interactions between the Mn10 units.  相似文献   
9.
The syntheses, structures, and magnetic properties are reported of the mixed-metal complexes [Ce4Mn10O10(OMe)6(O2CPh)16(NO3)2(MeOH)2(H2O)2] (1) and [Th6Mn10O22(OH)2(O2CPh)16-(NO3)2(H2O)8] (2), which were both prepared by the reaction of (NBun4)[Mn4O2(O2CPh)9(H2O)] (3) with a source of the heterometal in MeCN/MeOH. Complexes 1 and 2 crystallize in the monoclinic space group C2/c and the triclinic space group P, respectively. Complex 1 consists of 10 MnIII, 2 CeIII, and 2 CeIV atoms and possesses a very unusual tubular [Ce4Mn10O10(OMe)6]18+ core. Complex 2 consists of 10 MnIV and 6 ThIV atoms and possesses a [Th6Mn10O22(OH)2]18+ core with the metal atoms arranged in layers with a 2:3:6:3:2 pattern. Peripheral ligation around the cores is provided by 16 bridging benzoates, 2 chelating nitrates, and either (i) 2 each of terminal H2O and MeOH groups in 1 or (ii) 8 terminal H2O groups in 2. Complex 1 is the largest mixed-metal Ce/Mn cluster and the first 3d/4f cluster with mixed-valency in its lanthanide component, while complex 2 is the first Th/Mn cluster and the largest mixed transition metal/actinide cluster to date. Solid-state dc and ac magnetic susceptibility measurements on 1 and 2 establish that they possess S = 4 and 3 ground states, respectively. Ac susceptibility studies on 1 revealed nonzero frequency-dependent out-of-phase (chiM' ') signals at temperatures below 3 K; complex 2 displays no chiM' ' signals. However, single-crystal magnetization vs dc field scans at variable temperatures and variable sweep-rates down to 0.04 K on 1 revealed no noticeable hysteresis loops, except very minor ones at 0.04 K assignable to weak intermolecular interactions propagated by hydrogen bonds involving CeIII-bound ligands. Complex 1 is thus concluded not to be a single-molecule magnet (SMM), and the combined results thus represent a caveat against taking such ac signals as sufficient proof of a SMM.  相似文献   
10.
An investigation of the MII/X/L [MII = Co, Ni, Cu, Zn; X = Cl, Br, I, NCS, NO3, N3, CH3COO; L = 1-methyl-4,5-diphenylimidazole] general reaction system towards the detailed study of the intermolecular interactions utilized for controlling the supramolecular organization and the structural consequences on the structures produced has been initiated. Three representative complexes with the formulae [Co(NO3)2(L)2] (1), [Zn(NO3)2(L)2] (2) and [Co(NCS)2(L)2]·EtOH (3·EtOH) have been synthesized and characterized by spectroscopic methods and single-crystal X-ray analysis. Compounds 1 and 2 are isomorphous (tetragonal, I41cd) with their metal ions in a severely distorted octahedral Co/ZnN2O4 environment, while 3·EtOH crystallizes in P21/c with a tetrahedral CoN4 coordination. The structural analysis of 1, 2 and 3·EtOH reveals a common mode of packing among neighbouring ligands (expressed through intramolecular ππ interactions between the 4,5-diphenylimidazole moieties), enhancing thus the rigidity and stability of the complexes. The bent coordination of the two isothiocyanates in 3 [Co–NCS angles of 173.8(2) and 160.8(2)°] seems to be caused by intermolecular hydrogen bonding and crystal packing effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号