首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学   10篇
物理学   2篇
  2013年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Cow milk adulteration involves the dilution of milk with a less-expensive component, such as water or whey. Near-infrared spectroscopy (NIRS) was employed to detect the adulterations of milk, non-destructively. Two adulteration types of cow milk with water and whey were prepared, respectively. NIR spectra of milk adulterations and natural milk samples in the region of 1100 - 2500 nm were collected. The classification of milk adulterations and natural milk were conducted by using discriminant partial least squares (DPLS) and soft independent modelling of class analogy (SIMCA) methods. PLS calibration models for the determination of water and whey contents in milk adulteration were also developed, individually. Comparisons of the classification methods, wavelength regions and data pretreatments were investigated, and are reported in this study. This study showed that NIR spectroscopy can be used to detect water or whey adulterants and their contents in milk samples.  相似文献   
2.
Near-infrared (NIR) transflectance spectra in the region of 1100-2500 nm were measured for 100 Thai fish sauces. Quantitative analyses of total nitrogen (TN) content, pH, refractive index, density and brix in the Thai fish sauces and their qualitative analyses were carried out by multivariate analyses with the aid of wavelength interval selection method named searching combination moving window partial least squares (SCMWPLS). The optimized informative region for TN selected by SCMWPLS was the region of 2264-2428 nm. A PLS calibration model, which used this region, yielded the lowest root mean square error of prediction (RMSEP) of 0.100% w/v for the PLS factor of 5. This prediction result is significantly better than those obtained by using the whole spectral region or informative regions selected by moving window partial least squares regression (MWPLSR). As for pH, density, refractive index and brix, the 1698-1722, and 2222-2258 nm regions, the 1358-1438 nm region, the 1774-1846, and 2078-2114 nm regions, and the 1322-1442, and 2000-2076 nm regions were selected by SCMWPLS as the optimized regions. The best prediction results were always obtained by use of the optimized regions selected by SCMWPLS. The lowest RMSEP for pH, density, refractive index and brix were 0.170, 0.007 g cm(-3), 0.0079 and 0.435 degrees Brix, respectively. Qualitative models were developed by using four supervised pattern recognitions, linear discriminant analysis (LDA), factor analysis-linear discriminant analysis (FA-LDA), soft independent modeling of class analog (SIMCA), and K neareat neighbors (KNN) for the optimized combination of informative regions of the NIR spectra of fish sauces to classify fish sauces into three groups based on TN. All the developed models can potentially classify the fish sauces with the correct classification rate of more than 82%, and the KNN classified model has the highest correct classification rate (95%). The present study has demonstrated that NIR spectroscopy combined with SCMWPLS is powerful for both the quantitative and qualitative analyses of Thai fish sauces.  相似文献   
3.
Abstract

A new processing based on partial least squares (PLS) algorithm for the discrimination and determination of adulterants in pure olive oil using near‐infrared (NIR) spectroscopy has been introduced. The 280 adulterations of olive oil with corn oil (n=70), hazelnut oil (n=70), soya oil (n=70), and sunflower oil (n=70) were prepared, and their NIR spectra in the region 12,000–4550 cm?1 were collected. The 70 spectra of each adulteration of olive oil were divided into two sets, 50 spectra for a calibration set and 20 spectra for a prediction set. The spectra of a total calibration set (n=200) were separated into individual adulterant calibration sets (ni=50, i=corn, hazelnut, soya, sunflower) by using discriminant PLS (DPLS) analysis, and PLS calibration models for the quantification of adulterants with corn oil, hazelnut oil, soya oil, or sunflower oil were developed separately. A variety of wavelength ranges and data pretreatments were examined for obtaining optimal results for the discrimination and quantification objects. Four PLS models for differentiating the adulterant types were evaluated by classifying the NIR spectra of a total prediction set (n=80) into known adulterant types. Then, these known adulterant spectra were analyzed by the PLS calibration models developed for each type to determine the content of an adulterant in pure olive oil. The results of evaluation revealed that the processing reported in this article works excellently for the discrimination and quantification of the adulterations of olive oil.  相似文献   
4.
Kasemsumran S  Du YP  Li BY  Maruo K  Ozaki Y 《The Analyst》2006,131(4):529-537
A new cross validation method called moving window cross validation (MWCV) is proposed in this study, as a novel method for selecting the rational number of components for building an efficient calibration model in analytical chemistry. This method works with an innovative pattern to split a validation set by a number of given windows that move synchronously along proper subsets of all the samples. Calculations for the mean value of all mean squares error in cross validations (MSECVs) for all splitting forms are made for different numbers of components, and then the optimal number of components for the model can be selected. Performance of MWCV is compared with that of two cross validation methods, leave-one-out cross validation (LOOCV) and Monte Carlo cross validation (MCCV), for partial least squares (PLS) models developed on one simulated data set and two real near-infrared (NIR) spectral data sets. The results reveal that MWCV can avoid a tendency to over-fit the data. Selection of the optimal number of components can be easily made by MWCV because it yields a global minimum in root MSECV at the optimal number of components. Changes in the window size and window number of MWCV do not greatly influence the selection of the number of components. MWCV is demonstrated to be an effective, simple and accurate cross validation method.  相似文献   
5.
Near infrared (NIR) spectroscopy has become a promising technique for the in vivo monitoring of glucose. Several capillary-rich locations in the body, such as the tongue, forearm, and finger, have been used to collect the in vivo spectra of blood glucose. For such an in vivo determination of blood glucose, collected NIR spectra often show some dependence on the measurement conditions and human body features at the location on which a probe touches. If NIR spectra collected for different oral glucose intake experiments, in which the skin of different patients and the measurement conditions may be quite different, are directly used, partial least squares (PLS) models built by using them would often show a large prediction error because of the differences in the skin of patients and the measurement conditions. In the present study, the NIR spectra in the range of 1300-1900 nm were measured by conveniently touching an optical fiber probe on the forearm skin with a system that was developed for in vivo measurements in our previous work. The spectra were calibrated to resolve the problem derived from the difference of patient skin and the measurement conditions by two proposed methods, inside mean centering and inside multiplicative signal correction (MSC). These two methods are different from the normal mean centering and normal multiplicative signal correction (MSC) that are usually performed to spectra in the calibration set, while inside mean centering and inside MSC are performed to the spectra in every oral glucose intake experiment. With this procedure, spectral variations resulted from the measurement conditions, and human body features will be reduced significantly. More than 3000 NIR spectra were collected during 68 oral glucose intake experiments, and calibrated. The development of PLS calibration models using the spectra show that the prediction errors can be greatly reduced. This is a potential chemometric technique with simplicity, rapidity and efficiency in the pretreatment of NIR spectra collected during oral glucose intake experiments.  相似文献   
6.
Kasemsumran S  Du YP  Murayama K  Huehne M  Ozaki Y 《The Analyst》2003,128(12):1471-1477
Near-infrared (NIR) spectra in the 12,000-4,000 cm(-1) region were measured for phosphate buffer solutions containing human serum albumin (HSA), gamma-globulin, and glucose with various concentrations at 37 degrees C. Five levels of full factorial design were used to prepare a sample set consisting of 125 samples of three component mixtures. The concentration ranges of HSA, gamma-globulin and glucose were 0.00-6.00 g dl(-1), 0.00-4.00 g dl(-1) and 0.00-2.00 g dl(-1), respectively. The 125 sample data were split into two sets, the calibration set with 95 data and the prediction set with 30 data. The most informative spectral ranges of 4648-4323, 4647-4255 and 4912-4304 cm(-1) were selected by moving window partial least-squares regression (MWPLSR) for HSA, [gamma]-globulin, and glucose in the mixtures, respectively. For HSA, the correlation coefficient (R) of 0.9998 and the root mean square error of prediction (RMSEP) of 0.0289 g dl(-1) were obtained. For [gamma]-globulin, R of 0.9997 and RMSEP of 0.0252 g dl(-1) were obtained. The corresponding statistic values of glucose were 0.9997 and 0.0156 g dl(-1), respectively. These statistical values obtained by MWPLSR are highly significant and better than those calculated by using the regions reported in the literature. The results presented here show that MWPLSR can select the informative regions with a simple procedure and increase the power of NIR spectroscopy for simultaneous determination of the concentrations of HSA, [gamma]-globulin and glucose in the mixture systems.  相似文献   
7.
A new procedure has been developed for the classification and quantification of the adulteration of pure olive oil by soya oil, sun flower oil, corn oil, walnut oil and hazelnut oil. The study was based on a chemometric analysis of the near-infrared (NIR) spectra of olive-oil mixtures containing different adulterants. The adulteration of olive oil was carefully carried out gravimetrically in a 4 mm quartz cuvette, starting with pure olive oil in the cuvette first. NIR spectra of the 525 adulterated mixtures were measured in the region of 12,000-4000 cm(-1). The spectra were subjected batch wise to multiplicative signal correction (MSC) before calculating the principal component (PCA) models. The MSC-corrected data were subjected to Savitzky-Golay smoothing and a mean normalization procedure before developing partial least-squares calibration (PLS) models. The results revealed that the models predicted the adulterants, corn oil, sun flower oil, soya oil, walnut oil and hazelnut oil involved in olive oil with error limits +/-0.57, +/-1.32, +/-0.96, +/-0.56 and +/-0.57% weight/weight, respectively. Furthermore, the PCA developed models were able to classify unknown adulterated olive oil mixtures with almost 100% certainty. Quantification of the adulterants was carried out using their respective PLS models within the same error limits as mentioned above.  相似文献   
8.
New approach for chemometrics algorithm named region orthogonal signal correction (ROSC) has been introduced to improve the predictive ability of PLS models for biomedical components in blood serum developed from their NIR spectra in the 1280-1849 nm region. Firstly, a moving window partial least squares regression (MWPLSR) method was employed to locate the region due to water as a region of interference signals and to find the informative regions of glucose, albumin, cholesterol and triglyceride from NIR spectra of bovine serum samples. Next, a novel chemometrics method named searching combination moving window partial least squares (SCMWPLS) was used to optimize those informative regions. Then, the specific regions that contained the information of water, glucose, albumin, cholesterol and triglyceride were obtained. When an interested component in the bovine serum solution, such as glucose, albumin, cholesterol or triglyceride is being an analyte, the other three interests and water are considered as the interference factors. Thus, new approach for ROSC has employed for each specific region of interference signal to calculate the orthogonal components to the concentrations of analyte that were removed specifically from the NIR spectra of bovine serum in the region of 1280-1849 nm and the highest interference signal for model of analyte will be revealed. The comparison of PLS results for glucose, albumin, cholesterol and triglyceride built by using the whole region of original spectra and those developed by using the optimized regions suggested by SCMWPLS of original spectra, spectra treated OSC for orthogonal components of 1-3 and spectra treated ROSC using selected removing the highest interference signals from the spectra for orthogonal components of 1-3 are reported. It has been found that new approach of ROSC to remove the highest interference signal located by SCMWPLS improves of the performance of PLS modeling, yielding the lower RMSECV and smaller number of PLS factors.  相似文献   
9.
Near-infrared (NIR) spectra in the region of 5000-4000 cm−1 with a chemometric method called searching combination moving window partial least squares (SCMWPLS) were employed to determine the concentrations of human serum albumin (HSA), γ-globulin, and glucose contained in the control serum IIB (CS IIB) solutions with various concentrations. SCMWPLS is proposed to search for the optimized combinations of informative regions, which are spectral intervals, considered containing useful information for building partial least squares (PLS) models. The informative regions can easily be found by moving window partial least squares regression (MWPLSR) method. PLS calibration models using the regions obtained by SCMWPLS were developed for HSA, γ-globulin, and glucose. These models showed good prediction with the smallest root mean square error of predictions (RMSEP), the relatively small number of PLS factors, and the highest correlation coefficients among the results achieved by using whole region and MWPLSR methods. The RMSEP values of HSA, γ-globulin, and glucose yielded by SCMWPLS were 0.0303, 0.0327, and 0.0195 g/dl, respectively. These results prove that SCMWPLS can be successfully applied to determine simultaneously the concentrations of HSA, γ-globulin, and glucose in complicated biological fluids such as CS IIB solutions by using NIR spectroscopy.  相似文献   
10.
A novel chemometric method, region orthogonal signal correction (ROSC), is proposed and applied to pretreat near-infrared (NIR) spectra of blood glucose measured in vivo. Water is the most serious interference component in such kinds of noninvasive measurements, because it shows very high absorbance in the spectra. In the present study, the spectra of blood glucose in the range of 1212 - 1889 nm are used, in which the absorption of water around 1440 nm is very high. ROSC aims at removing the interference signal due to water from the spectra by selecting a set of spectra with a special region of 1404 - 1454 nm that mainly contain information about the variation of the interference component, water, and calculating the orthogonal components to the concentrations of glucose that will be removed. The difference between ROSC and orthogonal signal correction (OSC) is that ROSC uses a special region of spectra for the estimation of scores and loading weights of orthogonal components to pretreat the spectra in other regions, while OSC only uses one fixed region of spectra to calculate loadings, scores and weights of OSC components and removes the OSC components in the same region. A clear advantage of ROSC is that it is more interpretable than OSC, because one can select a spectral region to remove the variation of a special component such as water. Another chemometric method, moving window partial least squares (MWPLSR), is also used to select informative regions of glucose from the NIR spectra of blood glucose measured in vivo, leading to improved PLS models. Results of the application of ROSC demonstrate that ROSC-pretreated spectra including the whole spectral region of 1212 - 1889 nm or an informative region of 1600- 1730 nm selected by MWPLSR provide very good performance of the PLS models. Especially, the later region yields a model with RMSECV of 15.8911 mg/dL for four PLS components. ROSC is a potential chemometric technique in the pretreatment of various spectra.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号