首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学   10篇
物理学   2篇
  2021年   1篇
  2019年   1篇
  2014年   2篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有12条查询结果,搜索用时 109 毫秒
1.
Russian Physics Journal - The specific features of the sorption activity of silver nanoparticles (AgNPs) on biodegradable polymers of natural (collagen) and artificial (polyamide 6.6) origin have...  相似文献   
2.
Polarization properties of electromembrane systems (EMS) consisting of a heterogeneous membrane, either the MK-41 phosphonic acid membrane or the MK-40 sulfonic acid membrane, and dilute sodium chloride solutions are investigated with the rotating membrane disk method. For the MK-41/0.01 M NaCl and MK-41/0.001 M NaCl EMS, effective ion transport numbers and partial current-voltage curves (CVC) are measured for sodium and hydrogen ions, and limiting-current densities and the diffusion-layer thickness are calculated as functions of the rotation rate of the membrane disk. With the theory of the overlimiting state of EMS, internal parameters of the systems under investigation—the diffusion-layer thickness, the space-charge distribution, and electric-field strengths in the diffusion layer and in the membrane—are calculated from experimentally obtained CVC and the dependence of effective transport numbers on current density. The catalytic influence of ionogenic groups on the dissociation rate of water is analyzed quantitatively. Partial CVC for H+ ions are calculated for the space-charge region in MK-40 and MK-41 membranes. Analogous CVC for bipolar membranes containing sulfonic acid and phosphonic acid groups are compared. The dissociation mechanism of water is the same in all EMS and is independent of the membrane type and the nature of the functional groups.  相似文献   
3.
Polarization characteristics of electromembrane systems (EMS) based on the Russian commercial heterogeneous membranes MA-40 and MA-41, the anion-exchange heterogeneous membrane AMH (Mega, Czech Republic), and the modified membrane MA-40M are studied by the method of rotating membrane disk in dilute sodium chloride solutions. The effective transport numbers of ions are found; the partial voltammetric characteristics (VAC) with respect to chloride and hydroxyl ions are measured; the limiting current densities are calculated as a function of the membrane disk rotation rate. In terms of the theory of the overlimiting state of EMS, based on experimental VAC and the dependences of the effective transport numbers on the current density, the following internal parameters of systems under study are calculated: the space charge and electric field strength distribution over the diffusion layer and the membrane. It is shown that water dissociation can be virtually completely eliminated by substituting chemically stable quaternary ammonium groups inert with respect to water dissociation in the surface layer of a heterogeneous anion-exchange membrane MA-40 for the active ternary and secondary functional amino groups. The maximum electric field strength values at the membrane/solution interface, which were found in the framework of the theory of over-limiting state, turned out to be close for all anion-exchange membranes studied, namely, (7?C9) × 106 V/cm. This suggests that it is the nature of ionogenic groups in the surface layer rather than the field effect that plays the decisive role in the membrane ability to accelerate the water dissociation reaction. It is proved experimentally that in highly intense current modes of the electrodialysis process, the thermal hydrolysis of quaternary ammonium bases occurs in strongly basic MA-41 and AMH membranes by the Hofmann reaction to form ternary amino groups catalytically active in water dissociation reaction. Based on the concept on the catalytic mechanism of water dissociation, the fraction of ternary amino groups formed by thermal hydrolysis in the surface layer (the space charge region) of monopolar anion-exchange membranes MA-41 and AMH is assessed quantitatively as 0.7 and 6.5%, respectively.  相似文献   
4.
This study examines how conditions for modifying homogeneous MF-4SK and heterogeneous MK-40 membranes with tetraethoxysilane affect membrane properties. The microstructure of the bulk membrane and its surface, both before and after exposure to the modifying agent, is examined by scanning electron microscopy, spark spectrophotometry, and standard contact porosimetry. The process of sodium chloride concentration by electrodialysis with hybrid organic-inorganic membranes in cells with noncirculating concentration compartments is investigated, and a mathematical model of the concentration process by electrodialysis is used to determine transport properties: current efficiency, diffusion and osmotic permeabilities, and the salt hydration number. For highly hydrophilic membranes, it is shown that water transport occurs both in ion hydration shells and also as free water. It is established that after modified membranes undergo additional heat treatment, the transport of free water ceases, and the water transport number decreases. This is in accord with an increase in the salt content of the concentrate during concentration by electrodialysis.  相似文献   
5.
The size of the electroconvective instability region on the membrane-solution boundary at currents exceeding the limiting diffusion current was measured by laser interferometry. The influence of the chemical nature of the ionogenic groups of ion-exchange membranes on the development of electroconvective instability was studied. The thickness of the electroconvection region decreased as the catalytic activity of the ionogenic groups of commercial and pilot membrane samples with respect to the heterolytic water dissociation increased. The maximum size of the electroconvective instability region and the minimum currents at which it was recorded for the anion-exchange membranes under study were determined for the highly basic modified anion-exchange membrane MA-41M with an almost completely suppressed water dissociation function. A correlation was found between the size of the convective instability region and the characteristic points on the current-voltage curves.  相似文献   
6.
Within the framework of the mathematical model of Nernst-Planck-Poisson, an attempt is undertaken to theoretically describe the electrodiffusion of ions in the system diffusion layer/monopolar ionexchange membrane, which is accompanied by dissociation of water molecules. The formulas for estimating the current density transferred through a monopolar membrane by hydrogen or hydroxyl ions formed in dissociation of water in the space-charge region are derived. The rate constants and other parameters of dissociation of water molecules in the space-charge region of monopolar membranes under conditions of stabilization of the diffusion layer thickness are calculated. Their comparative analysis with the similar characteristics of bipolar membranes is carried out. For the phosphoric-acid heterogeneous membrane MK-41 in which the polarization conditions in the current density range under study are not so severe and the reaction layer is not being depleted as in the bipolar membrane MB-3 (contains the same phosphoric-acid groups), it is shown that only single-charged phosphoric-acid groups are involved in the water dissociation reaction. For MK-41, the calculated constants of the heterolytic reaction of water molecule dissociation are lower than for the heterogeneous membrane MA-40 containing ternary and quaternary amino groups. It is confirmed that the nature of ionogenic groups in membranes is a factor that determines the rate of water dissociation in systems with ion-exchange membranes.  相似文献   
7.
The polarization properties of an electromembrane system consisting of an MK-40 membrane and a dilute sodium chloride solution are investigated with an experimental apparatus, which includes a rotating membrane disk with a horizontally positioned membrane. For the electrochemical systems of MK-40/0.01 M NaCl and MK-40/0.001 M NaCl, effective ion transport numbers and partial current-voltage curves are determined for sodium and hydrogen ions, and limiting-current densities and the diffusion-layer thickness are calculated as functions of the rotation rate of the membrane disk. The space-charge distribution in the diffusion layer and in the membrane is calculated for various current densities and rotation rates of the membrane. It is shown that when electric-current densities are greater than the limiting value, ion fluxes of the salt increase as a result of a decrease in the effective thickness of the diffusion layer. This decrease is caused by the development of space charge, electroconvection, water dissociation, and the exaltation effect in the region near the membrane. It has been established that in dilute solutions the limiting current is not purely electrodiffusive in nature.  相似文献   
8.
Polarization characteristics of the homogeneous MF-4SK perfluorinated sulfonated cation-exchange membrane and the heterogeneous MK-40 sulfonic acid membrane with its surface modified by a homogeneous film of Nafion are studied at a rotating membrane disk in 0.1 and 0.001 M sodium chloride solutions. Partial current-voltage curves (CVC) are obtained for sodium and hydrogen ions, and limiting current densities in the electromembrane systems (EMS) under study are calculated as a function of the rotation rate of the membrane disk. Contribution from different mechanisms (electrodiffusion, electroconvection, dissociation of water, and the effect of the limiting-current exaltation) to the total ion flow is estimated experimentally and theoretically under conditions that the diffusion layer in the EMS has stabilized in thickness. It is established that surface modification of the heterogeneous MK-40 membrane with a 7 μm layer of a modifying agent almost completely eliminates the dissociation of water molecules, and the properties of the heterogeneous MK-40 membrane approximate those of the homogeneous Nafion membrane. From IR spectra and potentiometric titration curves of the MK-40 and MF-4SK membranes, it is shown that the acidity of the sulfonate groups in these membranes is nearly identical, but a difference in the dissociation rate of water at these membranes is determined by a different character of charge-density distribution and potential near the membrane-solution interphase boundary. By means of the theory of the overlimiting state in EMS, the internal parameters of the systems under investigation are calculated: distribution of space-charge density and electric-field potential in the diffusion layer and in the membrane. Partial CVC are calculated for H+ ions for the space-charge region in the phase of the MF-4SK and MK-40/Nafion ion-exchange membranes. Partial CVC with similar characteristics are compared for the heterogeneous monopolar MK-40 and the bipolar MB-2 membranes, which contain sulfonate groups. It is concluded that the membrane surface layer, where the space charge is localized, plays a dominant role in speeding up the dissociation of water in EMS.  相似文献   
9.
Russian Physics Journal - The aggregate stability of silver nanoparticles (Ag – NPs) in a gel composition is estimated. It is established that during long-term storage (for 3 years), a...  相似文献   
10.
The dynamics of changes in overall and partial voltammetric characteristics with respect to chloride and hydroxide ions is studied by the method of rotating membrane disk (RMD) under the conditions of stabilized diffusion layer thickness for the original strongly basic MA-41P and homogeneous AMX membranes and also for the modified heterogeneous MA-41P-M membrane at high current densities. For unmodified anion-exchange membranes at currents exceeding the limiting value, the hydrolysis of fixed ammonium bases produces secondary and ternary amino groups which are catalytically active in the reaction of water molecule dissociation. The hydrolysis of amino groups in the membrane surface layer is the mechanism of degradation of electrochemical characteristics of strongly basic membranes. This results in the increase of transport numbers with respect to hydroxide ions and weakening of mass transfer with respect to salt ions. For the surface-modified heterogeneous anion-exchange membranes, no degradation of electrochemical characteristics is observed. The characteristics of the surface-modified MA-41P-M membrane remain stable: after long-term operation of the energized membrane, the partial currents with respect to hydroxide ions are close to zero and the mass transfer with respect to salt ions is considerably intensified. The dependences of the thickness of the hydrolyzed layer of a strongly basic anion-exchange membrane on the time of its exposure to solutions of high pH are determined. An original method is developed for determination of the hydrolyzed layer thickness for strongly-basic anion-exchange membranes, which is based on the copper ability to form stable complex compounds with weakly basic amino groups of anion-exchange membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号