首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the synthesis of HKUST‐1 (Cu3(btc)2; btc=benzene‐1,3,5‐tricarboxylate) and its growth kinetics by dynamic light scattering completely at room temperature without prior nucleation‐induction steps. Upon an increase in concentration of the starting solutions, the generation of a pure phase requires adjustment of the H2O/EtOH ratio. The presence of DMF is important to avoid competitive side phases. Replacement of DMF by a minimal amount of diethylamine resulted in the instantaneous formation of pure HKUST‐1 upon mixing at room temperature. Additionally, the synthesis parameters strongly influence the final crystallite size and porous properties.  相似文献   

2.
Nano‐Zn‐[2‐boromophenyl‐salicylaldimine‐methylpyranopyrazole]Cl2 (nano‐[Zn‐2BSMP]Cl2) as a nanoparticle Schiff base complex and a catalyst was introduced for the solvent‐free synthesis of 4‐((2‐hydroxynaphthalen‐1‐yl)(aryl)methyl)‐5‐methyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐ones by the multicomponent condensation reaction of various aromatic aldehydes, β‐naphthol, ethyl acetoacetate, and phenyl hydrazine at room temperature.  相似文献   

3.
Three‐dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(η3‐C3H5)(η5‐C5H5)]@COF‐102 inclusion compound (synthesized by a gas‐phase infiltration method) led to the formation of the Pd@COF‐102 hybrid material. Advanced electron microscopy techniques (including high‐angle annular dark‐field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4±0.5) nm) were evenly distributed inside the COF‐102 framework. The Pd@COF‐102 hybrid material is a rare example of a metal‐nanoparticle‐loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30 wt %). Two samples with moderate Pd content (3.5 and 9.5 wt %) were used to study the hydrogen storage properties of the metal‐decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metal–organic frameworks (MOFs). The studies show that the H2 capacities were enhanced by a factor of 2–3 through Pd impregnation on COF‐102 at room temperature and 20 bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems.  相似文献   

4.
A heterogeneous material composed of MCM‐48/H5PW10V2O40 was produced and used as an efficient, eco‐friendly and highly recyclable catalyst for the one‐pot and multicomponent synthesis of 3,4‐dihydroquinoxalin‐2‐amine, diazepine‐tetrazole and benzodiazepine‐2‐carboxamide derivatives in aqueous media and at room temperature with high yields in short reaction times (40–60 min). The recoverable catalyst was easily recycled at least five times without any loss of catalytic activity. The structures of obtained products were confirmed using 1H NMR and 13C NMR spectra.  相似文献   

5.
Stereospecific synthesis of a family of novel (E)‐2‐aryl‐1‐silylalka‐1,4‐dienes or (E)‐4‐aryl‐5‐silylpenta‐1,2,4‐trienes via a cross‐coupling of (Z)‐silyl(stannyl)ethenes with allyl halides or propargyl bromide is described. In the reaction with allyl bromide, either a Pd(dba)2? CuI combination (dba, dibenzylideneacetone) in DMF or copper(I) iodide in DMSO–THF readily catalyzes or mediates the coupling reaction of (Z)‐silyl(stannyl)ethenes at room temperature, producing novel vinylsilanes bearing an allyl group β to silicon with cis ‐disposition in good yields. Allyl chlorides as halides can be used in the CuI‐mediated reaction. CuI alone much more effectively mediates the cross‐coupling reaction with propargyl bromide in DMSO–THF at room temperature compared with a Pd(dba)2? CuI combination catalysis in DMF, providing novel stereodefined vinylsilanes bearing an allenyl group β to silicon with cis ‐disposition in good yields. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Two‐dimensional covalent organic frameworks (2D COFs), an emerging class of crystalline porous polymers, have been recognized as a new platform for efficient solar‐to‐hydrogen energy conversion owing to their pre‐designable structures and tailor‐made functions. Herein, we demonstrate that slight modulation of the chemical structure of a typical photoactive 2D COF (Py‐HTP‐BT‐COF) via chlorination (Py‐ClTP‐BT‐COF) and fluorination (Py‐FTP‐BT‐COF) can lead to dramatically enhanced photocatalytic H2 evolution rates (HER=177.50 μmol h?1 with a high apparent quantum efficiency (AQE) of 8.45 % for Py‐ClTP‐BT‐COF). Halogen modulation at the photoactive benzothiadiazole moiety can efficiently suppress charge recombination and significantly reduce the energy barrier associated with the formation of H intermediate species (H*) on polymer surface. Our findings provide new prospects toward design and synthesis of highly active organic photocatalysts toward solar‐to‐chemical energy conversion.  相似文献   

7.
Crystalline and porous covalent organic frameworks (COFs) and metal‐organic frameworks (MOFs) materials have attracted enormous attention in the field of photocatalytic H2 evolution due to their long‐range order structures, large surface areas, outstanding visible light absorbance, and tunable band gaps. In this work, we successfully integrated two‐dimensional (2D) COF with stable MOF. By covalently anchoring NH2‐UiO‐66 onto the surface of TpPa‐1‐COF, a new type of MOF/COF hybrid materials with high surface area, porous framework, and high crystallinity was synthesized. The resulting hierarchical porous hybrid materials show efficient photocatalytic H2 evolution under visible light irradiation. Especially, NH2‐UiO‐66/TpPa‐1‐COF (4:6) exhibits the maximum photocatalytic H2 evolution rate of 23.41 mmol g?1 h?1 (with the TOF of 402.36 h?1), which is approximately 20 times higher than that of the parent TpPa‐1‐COF and the best performance photocatalyst for H2 evolution among various MOF‐ and COF‐based photocatalysts.  相似文献   

8.
An efficient method has been developed for the synthesis of 1,8‐dioxo‐octahydroxanthene derivatives in two‐step. In the first step, the electrogenerated base (EGB) catalyzed multicomponent transformation of dimedone and aromatic aldehydes in an undivided cell in the presence of sodium bromide as an electrolyte into 2,2′‐arylmethylene bis(3‐hydroxy‐5,5‐dimethyl‐2‐cyclohexene‐1‐one) at room temperature. In the second step, H2SO4 was employed as a dehydrating reagent for the cyclization process to give symmetrical heterocycles 1,8‐dioxo‐octahydroxanthene derivatives. Short reaction time, convenient work up, and using of inexpensive reagents, simple equipment, novel and eco‐friendly procedure make this strategy more useful for the preparation of xanthene derivatives.  相似文献   

9.
CdS nanoparticles were deposited on a highly stable, two‐dimensional (2D) covalent organic framework (COF) matrix and the hybrid was tested for photocatalytic hydrogen production. The efficiency of CdS‐COF hybrid was investigated by varying the COF content. On the introduction of just 1 wt % of COF, a dramatic tenfold increase in the overall photocatalytic activity of the hybrid was observed. Among the various hybrids synthesized, that with 10 wt % COF, named CdS‐COF (90:10), was found to exhibit a steep H2 production amounting to 3678 μmol h?1 g?1, which is significantly higher than that of bulk CdS particles (124 μmol h?1 g?1). The presence of a π‐conjugated backbone, high surface area, and occurrence of abundant 2D hetero‐interface highlight the usage of COF as an effective support for stabilizing the generated photoelectrons, thereby resulting in an efficient and high photocatalytic activity.  相似文献   

10.
Hexahydro‐5‐oxoquinoline‐3‐carboxylates and 1,4‐dihydropyridine‐3,5‐dicarboxylates were synthesized efficiently and rapidly (2 min) in the presence of molybdenum‐ and tungsten‐based coordination polymers [M(Bu3Sn)2O4)]n (M=Mo or W) as catalysts (Schemes 1 and 2; Tables 2 and 3). The products were formed at room temperature in excellent yields (90–98%). The catalysts worked under heterogeneous conditions and were recyclable. The earlier reports for the application of these polymers to conduct organic synthesis are limited. The present method explores a new and useful application of these catalysts.  相似文献   

11.
《合成通讯》2013,43(13):1741-1746
Abstract

The room‐temperature ionic liquid n‐butylpyridinium tetrafluoroborate (BPyBF4) is used as a recyclable alternative to classical molecular solvents in the one‐pot synthesis of 2‐arylimidazo[1,2‐a]pyrimidines by reaction with ketones, [hydroxy(tosyloxy)iodo]benzene, and 2‐aminopyrimidine. Significant rate enhancements and improved yields have been observed.  相似文献   

12.
The room‐temperature ionic liquid (RT‐IL) [C(CH3)3]+ [Al2Br7]? (m.p. 2 °C) was generated by bromide abstraction from tert‐butyl bromide with the Lewis acid aluminum bromide in the absence of solvent. The crystal structure of the tert‐butyl cation salt was determined by X‐ray diffraction. NMR, IR, and Raman spectroscopy, as well as quantum‐chemical and thermodynamic calculations, confirm the composition of this RT‐IL. Thus, one may consider this RT‐IL to be a readily accessible (and on a large scale) cationic Brønsted acid (protonated isobutene) with the potential for further reactivity. Based on the new absolute Brønsted acidity scale, we calculated an absolute pHabs value of 171 for liquid bulk [C(CH3)3]+ [Al2Br7]?. This value is about as acidic as 100 % sulfuric acid (pHabs=171) and, thus, on the edge of superacidity.  相似文献   

13.
COF‐1 has a structure with rigid 2D layers composed of benzene and B3O3 rings and weak van der Waals bonding between the layers. The as‐synthesized COF‐1 structure contains pores occupied by solvent molecules. A high surface area empty‐pore structure is obtained after vacuum annealing. High‐pressure XRD and Raman experiments with mesitylene‐filled (COF‐1‐M) and empty‐pore COF‐1 demonstrate partial amorphization and collapse of the framework structure above 12–15 GPa. The ambient pressure structure of COF‐1‐M can be reversibly recovered after compression up to 10–15 GPa. Remarkable stability of highly porous COF‐1 structure at pressures at least up to 10 GPa is found even for the empty‐pore structure. The bulk modulus of the COF‐1 structure (11.2(5) GPa) and linear incompressibilities (k[100]=111(5) GPa, k[001]=15.0(5) GPa) were evaluated from the analysis of XRD data and cross‐checked against first‐principles calculations.  相似文献   

14.
A strategy to covalently connect crystalline covalent organic frameworks (COFs) with semiconductors to create stable organic–inorganic Z‐scheme heterojunctions for artificial photosynthesis is presented. A series of COF–semiconductor Z‐scheme photocatalysts combining water‐oxidation semiconductors (TiO2, Bi2WO6, and α‐Fe2O3) with CO2 reduction COFs (COF‐316/318) was synthesized and exhibited high photocatalytic CO2‐to‐CO conversion efficiencies (up to 69.67 μmol g?1 h?1), with H2O as the electron donor in the gas–solid CO2 reduction, without additional photosensitizers and sacrificial agents. This is the first report of covalently bonded COF/inorganic‐semiconductor systems utilizing the Z‐scheme applied for artificial photosynthesis. Experiments and calculations confirmed efficient semiconductor‐to‐COF electron transfer by covalent coupling, resulting in electron accumulation in the cyano/pyridine moieties of the COF for CO2 reduction and holes in the semiconductor for H2O oxidation, thus mimicking natural photosynthesis.  相似文献   

15.
The synthesis of a new series of 4‐aryl‐3‐chloro‐2‐oxo‐N‐[3‐(10H‐phenothiazin‐10‐yl)propyl]azetidine‐1‐carboxamides, 4a – 4m , is described. Phenothiazine on reaction with Cl(CH2)3Br at room temperature gave 10‐(3‐chloropropyl)‐10H‐phenothiazine ( 1 ), and the latter reacted with urea to yield 1‐[3‐(10H‐phenothiazin‐10‐yl)propyl]urea ( 2 ). Further reaction of 2 with several substituted aromatic aldehydes led to N‐(arylmethylidene)‐N′‐[3‐(phenothiazin‐10‐yl)propyl]ureas 3a – 3m , which, on treatment with ClCH2COCl in the presence of Et3N, furnished the desired racemic trans‐2‐oxoazetidin‐1‐carboxamide derivatives 4a – 4m . The structures of all new compounds were confirmed by IR, and 1H‐ and 13C‐NMR spectroscopy, FAB mass spectrometry, and chemical methods.  相似文献   

16.
Reaction between 2‐(1H‐pyrrol‐1‐yl)benzenamine and 2‐hydroxybenzaldehyde or 3,5‐di‐tert‐butyl‐2‐hydroxybenzaldehyde afforded 2‐(4,5‐dihydropyrrolo[1,2‐a]quinoxalin‐4‐yl)phenol (HOL1NH, 1a) or 2,4‐di‐tert‐butyl‐6‐(4,5‐dihydropyrrolo[1,2‐a]quinoxalin‐4‐yl)phenol (HOL2NH, 1b). Both 1a and 1b can be converted to 2‐(H‐pyrrolo[1,2‐a]quinoxalin‐4‐yl)phenol (HOL3N, 2a) and 2,4‐di‐tert‐butyl‐6‐(H‐pyrrolo[1,2‐a]quinoxalin‐4‐yl)phenol (HOL4N, 2b), respectively, by heating 1a and 1b in toluene. Treatment of 1b with an equivalent of AlEt3 afforded [Al(Et2)(OL2NH)] (3). Reaction of 1b with two equivalents of AlR3 (R = Me, Et) gave dinuclear aluminum complexes [(AlR2)2(OL2N)] (R = Me, 4a; R = Et, 4b). Refluxing the toluene solution of 4a and 4b, respectively, generated [Al(R2)(OL4N)] (R = Me, 5a; R = Et, 5b). Complexes 5a and 5b were also obtained either by refluxing a mixture of 1b and two equivalents of AlR3 (R = Me, Et) in toluene or by treatment of 2b with an equivalent of AlR3 (R = Me, Et). Reaction of 2a with an equivalent of AlMe3 afforded [Al(Me2)(OL3N)] (5c). Treatment of 1b with an equivalent of ZnEt2 at room temperature gave [Zn(Et)(OL2NH)] (6), while reaction of 1b with 0.5 equivalent of ZnEt2 at 40 °C afforded [Zn(OL2NH)2] (7). Reaction of 1b with two equivalents of ZnEt2 from room temperature to 60 °C yielded [Zn(Et)(OL4N)] (8). Compound 8 was also obtained either by reaction between 6 and an equivalent of ZnEt2 from room temperature to 60 °C or by treatment of 2b with an equivalent of ZnEt2 at room temperature. Reaction of 2b with 0.5 equivalent of ZnEt2 at room temperature gave [Zn(OL4N)2] (9), which was also formed by heating the toluene solution of 6. All novel compounds were characterized by NMR spectroscopy and elemental analyses. The structures of complexes 3, 5c and 6 were additionally characterized by single‐crystal X‐ray diffraction techniques. The catalysis of complexes 3, 4a, 5a–c, 6 and 8 toward the ring‐opening polymerization of ε‐caprolactone was evaluated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The construction of stable covalent organic frameworks (COFs) for various applications is highly desirable. Herein, we report the synthesis of a novel two‐dimensional (2D) porphyrin‐based sp2 carbon‐conjugated COF (Por‐sp2c‐COF), which adopts an eclipsed AA stacking structure with a Brunauer—Emmett—Teller surface area of 689 m2 g?1. Owing to the C=C linkages, Por‐sp2c‐COF shows a high chemical stability under various conditions, even under harsh conditions such as 9 m HCl and 9 m NaOH solutions. Interestingly, Por‐sp2c‐COF can be used as a metal‐free heterogeneous photocatalyst for the visible‐light‐induced aerobic oxidation of amines to imines. More importantly, in comparison to imine‐linked Por‐COF, the inherent structure of Por‐sp2c‐COF equips it with several advantages as a photocatalyst, including reusability and high photocatalytic performance. This clearly demonstrates that sp2 carbon‐linked 2D COFs can provide an interesting platform for heterogeneous photocatalysis.  相似文献   

18.
An efficient procedure for the synthesis of N‐alkyl‐2,5‐diaryl‐1,3‐dioxol‐4‐amines 3 via a one‐pot reaction of aromatic aldehydes 2 and alkyl isocyanides 1 at room temperature in good yields is described (Scheme 1, Table).  相似文献   

19.
In this study, Ag, Ni2+, and Fe2+ immobilized on hydroxyapatite‐core‐shell γ‐Fe2O3 nanoparticles (γ‐Fe2O3@HAp‐Ag, γ‐Fe2O3@HAp‐Ni2+, and γ‐Fe2O3@HAp‐Fe2+) as a new and reusable Lewis acid magnetic nanocatalyst was successfully synthesized and reported for an atom economic, extremely facile, and environmentally benign procedure for the synthesis of highly functionalized tetrahydropyridines derivatives 4a‐t is described by one‐pot five‐component reaction of 2 equiv of aldehydes 1 , 2 equiv of amines 2 , and 1 equiv of methyl acetoacetate 3 in EtOH at room temperature in good to high yields and short reaction time. The presented methodology offers several advantages such as easy work‐up procedure, reusability of the magnetic nanocatalyst, operational simplicity, green synthesis avoiding toxic reagents and solvent, mild reaction conditions, and no tedious column chromatographic separation.  相似文献   

20.
Two antibacterial and antifungal agents, chloroxylenol (4‐chloro‐3,5‐dimethyl‐phenol) and triclosan (5‐chloro‐2‐(2’,4’‐dichlorophenoxy)‐phenol), were studied experimentally in solid state with an X‐ray, 35Cl‐nuclear quadrupole resonance (NQR) and 17O‐nuclear quadrupole double resonance (NQDR) spectroscopies and, theoretically, with the density functional theory/quantum theory of atoms in molecules (DFT/QTAIM). The crystallographic structure of triclosan, which crystallises in space group P31 with one molecule in the asymmetric unit [a = 12.64100(10), b = 12.64100(10), c = 6.71630(10) Å], was solved with an X‐ray and refined to a final R‐factor of 2.81% at room temperature. The NQR frequencies of 35Cl and 17O were detected with the help of the density functional theory (DFT) assigned to particular chlorine and oxygen sites in the molecules of both compounds. The NQR frequencies at 35Cl sites in chloroxylenol and triclosan were found to be more differentiated than frequencies at the 17O site. The former better describes the substituent withdrawing effects connected to π‐electron delocalization within the benzene rings and the influence of temperature; whereas, those at the 17O site provide more information on O‐H bond and intermolecular interactions pattern. The conformation adopted by diphenyl ether of triclosan in solid state was found to be typical of diphenyl ethers, but the opposite to those adopted when it was bound to different inhibitors. According to an X‐ray study, temperature had no effect on the conformation of the diphenyl ring of triclosan, which was the same at 90 K and at room temperature (RT). The scattering of NQR frequencies reproduced by the DFT under assumption of the X‐ray data at 90 K and RT is found to be a good indicator of the quality of resolution of the crystallographic structure. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号