首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1003篇
  免费   47篇
  国内免费   2篇
化学   838篇
晶体学   23篇
力学   8篇
数学   83篇
物理学   100篇
  2023年   14篇
  2022年   6篇
  2021年   20篇
  2020年   27篇
  2019年   27篇
  2018年   15篇
  2017年   11篇
  2016年   39篇
  2015年   30篇
  2014年   32篇
  2013年   53篇
  2012年   101篇
  2011年   98篇
  2010年   49篇
  2009年   32篇
  2008年   70篇
  2007年   71篇
  2006年   77篇
  2005年   64篇
  2004年   75篇
  2003年   40篇
  2002年   27篇
  2001年   7篇
  2000年   3篇
  1999年   6篇
  1998年   2篇
  1997年   5篇
  1996年   9篇
  1995年   5篇
  1994年   8篇
  1993年   8篇
  1992年   2篇
  1990年   3篇
  1988年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1959年   1篇
  1916年   1篇
排序方式: 共有1052条查询结果,搜索用时 31 毫秒
1.
Functional, degradable polymers were synthesized via the copolymerization of vinyl acetate (VAc) and 2‐methylene‐1,3‐dioxepane (MDO) using a macro‐xanthate CTA, poly(N‐vinylpyrrolidone), resulting in the formation of amphiphilic block copolymers of poly(NVP)‐b‐poly(MDO‐co‐VAc). The behavior of the block copolymers in water was investigated and resulted in the formation of self‐assembled nanoparticles containing a hydrophobic core and a hydrophilic corona. The size of the resultant nanoparticles was able to be tuned with variation of the hydrophilic and hydrophobic segments of the core and corona by changing the incorporation of the macro‐CTA as well as the monomer composition in the copolymers, as observed by Dynamic Light Scattering, Static Light Scattering, and Transmission Electron Microscopy analyses. The concept was further applied to a VAc derivative monomer, vinyl bromobutanoate, to incorporate further functionalities such as fluorescent dithiomaleimide groups throughout the polymer backbone using azidation and “click” chemistry as postpolymerization tools to create fluorescently labeled nanoparticles. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2699–2710  相似文献   
2.
The neutral complex dichloro-{diethyl[(5-phenyl-1,3,4-oxadiazol-2-ylamino)-(4-trifluoro-methylphenyl)methyl]phosphonate} (p-cymene)-ruthenium(II) was encapsulated inside a self-assembled hexameric host obtained upon reaction of 2,8,14,20-tetra-undecyl-resorcin[4]arene and water. The formation of an inclusion complex was inferred from a combination of spectral measurements (MS, UV/Vis spectroscopy, 1H and DOSY NMR). The 31P and 19F NMR spectra are consistent with motions of the ruthenium complex inside the self-assembled capsule. Molecular dynamics simulations carried out on the inclusion complex confirmed these intra-cavity movements and highlighted possible supramolecular interactions between the ruthenium first coordination sphere ligands and the inner part (aromatic rings) of the capsule. The embedded ruthenium complex was assessed in the catalytic oxidation (using NaIO4 as oxidant) of mixtures of three arylmethyl alcohols into the corresponding aldehydes. The reaction kinetics were shown to vary as a function of the substrates’ size, with the oxidation rate varying in the order benzylalcohol >4-phenyl-benzylalcohol >9-anthracenemethanol. Control experiments realized in the absence of hexameric capsule did not allow any discrimination between the substrates.  相似文献   
3.
A palladium-catalysed Buchwald–Hartwig amination for lenalidomide-derived aryl bromides was optimised using high throughput experimentation (HTE). The substrate scope of the optimised conditions was evaluated for a range of alkyl- and aryl- amines and functionalised aryl bromides. The methodology allows access to new cereblon-based bifunctional proteolysis targeting chimeras with a reduced step count and improved yields.  相似文献   
4.
5.
With a vast, synthetically accessible compositional space and highly tunable hydrolysis rates, poly(β-amino ester)s (PBAEs) are an attractive degradable polymer platform. Leveraging PBAEs in a wide range of applications hinges on the ability to program degradation, which, thus far, has been frustrated by multiple confounding phenomena contributing to the degradation of these charged polyesters. Basic conditions accelerate hydrolysis, yet reduce solubility, limiting water access to amines and esters. Further, the high buffering capacity of PBAEs can render buffers ineffective at controlling solution pH. To unify understanding of PBAE degradation and solution properties, this study examines PBAE hydrolysis as a function of pH and buffer concentration as well as polymer hydrophobicity. At low buffer concentrations, the PBAE amines and the acid produced during hydrolysis control solution pH. Meanwhile, at high buffer concentrations that afford relatively constant pH, hydrolysis rate increases with pH, despite the reduced PBAE solubility. Increasing the hydrophobic content of PBAEs eventually hinders the capacity of the polymer to accept protons from solution, limiting the pH increase and slowing hydrolysis. These studies showcase the role of buffering on the pH-dependent degradation and solution properties of PBAEs, providing guidance for programming degradation in applications ranging from drug delivery to thermosets.  相似文献   
6.
Crystallization-driven self-assembly (CDSA) was employed for the preparation of monodisperse cationic cylindrical nanoparticles with controllable sizes, which were subsequently explored for their effect on antibacterial activity and the mechanical properties of nanocomposite hydrogels. Poly(ɛ-caprolactone)-block-poly(methyl methacrylate)-block-poly[2-(tert-butylamino) ethyl methacrylate] (PCL-b-PMMA-b-PTA) triblock copolymers were synthesized using combined ring-opening and RAFT polymerizations, and then self-assembled into polycationic cylindrical micelles with controllable lengths by epitaxial growth. The polycationic cylinders exhibited intrinsic cell-type-dependent antibacterial capabilities against gram-positive and gram-negative bacteria under physiological conditions, without quaternization or loading of any additional antibiotics. Furthermore, when the cylinders were combined into anionic alginate hydrogel networks, the mechanical response of the hydrogel composite was tunable and enhanced up to 51%, suggesting that cationic polymer fibers with controlled lengths are promising mimics of the fibrous structures in natural extracellular matrix to support scaffolds. Overall, this polymer fiber/hydrogel nanocomposite shows potential as an injectable antibacterial biomaterial, with possible application in implant materials as bacteriostatic agents or bactericides against various infections.  相似文献   
7.
The photoactivation of electron donor-acceptor complexes has emerged as a sustainable, selective and versatile strategy for the generation of radical species. Electron donor-acceptor (EDA) complexation, however, imposes electronic constraints on the donor and acceptor components and this can limit the range of radicals that can be generated using the approach. New EDA complexation strategies exploiting sulfonium salts allow radicals to be generated from native functionality. For example, aryl sulfonium salts, formed by the activation of arenes, can serve as the acceptor components in EDA complexes due to their electron-deficient nature. This “sulfonium tag” approach relaxes the electronic constraints on the parent substrate and dramatically expands the range of radicals that can be generated using EDA complexation. In this review, these new applications of sulfonium salts will be introduced and the areas of chemical space rendered accessible through this innovation will be highlighted.  相似文献   
8.
Serum proteins represent an important class of drug and imaging agent delivery vectors. In this minireview, key advantages of using serum proteins are discussed, followed by the particular advantages and challenges associated with employing soluble folate binding protein. In particular, approaches employing drugs that target folate metabolism are reviewed. Additionally, the slow-onset, tightbinding interaction of folate with folate binding protein and the relationship to a natural oligomerization mechanism is discussed. These unique aspects of folate binding protein suggest interesting applications for the protein as a vector for further drug and imaging agent development.  相似文献   
9.
10.
Liquid chromatography-mass spectrometry methods were required to afford the rapid separation and detection of purines and small organic acids. These compounds are found in sweat and sebum and are potential biomarkers for the early detection of pressures sores. Two ultra-high-performance supercritical fluid chromatography-mass spectrometry assays have been successfully developed for both classes of compounds. Separation for purines was achieved using a gradient of supercritical carbon dioxide and methanol with a 1-aminoanthracene sub 2 μm particle size column followed by positive ion electrospray ionization. Separation for organic acids was achieved using a gradient of supercritical carbon dioxide and methanol (50 mM ammonium acetate 2% water) with a Diol sub 2 μm particle size column followed by negative ion electrospray ionization. Calibration curves were created in the absence of internal standards and R2 values > 0.96 were achieved using single ion monitoring methods for the protonated purines and the deprotonated acids. The two new assays afford rapid analytical methods for the separation and detection of potential biomarkers in human sweat leading to the early detection and prevention of pressure sores.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号