首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
化学   5篇
数学   1篇
物理学   38篇
  2015年   1篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
The smallest detectable duration of a brief decrement in the intensity of wideband noise was measured as a function of the depth of the decrement. In the first experiment, conditions were tested in which the noise before the decrement was more intense than the noise after the decrement, and vice-versa. These data were used to estimate the shape of an intensity-weighting function, or temporal window, describing the temporal resolution of the ear. The equivalent rectangular durations (ERDs) of the temporal windows measured in this way had values of about 5.5, 4.6, and 6.6 ms for noise spectrum levels of 10, 30, and 50 dB, respectively. In a second experiment, decrement detection was measured in subjects with unilateral sensorineural hearing loss. One set of thresholds was measured in the impaired ear, and two sets of thresholds were measured in the normal ear; one with the noise level at equal SPL to the level in the impaired ear, and one with the noise at equal SL. Temporal window shapes were also estimated from these data. Only one of the subjects showed reduced temporal resolution in the impaired ear, the other two subjects having similar ERD values for all three conditions.  相似文献   
2.
The shape of the ear's temporal window   总被引:3,自引:0,他引:3  
This article examines the idea that the temporal resolution of the auditory system can be modeled using a temporal window (an intensity weighting function) analogous to the auditory filter measured in the frequency domain. To estimate the shape of the hypothetical temporal window, threshold was measured for a brief sinusoidal signal presented in a temporal gap between two bursts of noise. The duration of the gap was systematically varied and the signal was placed both symmetrically and asymmetrically within the gap. The data were analyzed by assuming that the temporal window had the form of a simple mathematical expression with a small number of free parameters. The values of the parameters were adjusted to give the best fit to the data. The analysis assumed that, for each condition, the temporal window was centered at the time giving the highest signal-to-masker ratio, and that threshold corresponded to a fixed ratio of signal energy to masker energy at the output of the window. The data were fitted well by modeling each side of the window as the sum of two rounded-exponential functions. The window was highly asymmetric, having a shallower slope for times before the center than for times after. The equivalent rectangular duration (ERD) of the window was typically about 8 ms. The ERD increased slightly when the masker level was decreased, but did not differ significantly for signal frequencies of 500 and 2000 Hz. The temporal-window model successfully accounts for the data from a variety of experiments measuring temporal resolution. However, it fails to predict certain aspects of forward masking and of the detection of amplitude modulation at high rates.  相似文献   
3.
Cochlear nonlinearity was estimated over a wide range of center frequencies and levels in listeners with normal hearing, using a forward-masking method. For a fixed low-level probe, the masker level required to mask the probe was measured as a function of the masker-probe interval, to produce a temporal masking curve (TMC). TMCs were measured for probe frequencies of 500, 1000, 2000, 4000, and 8000 Hz, and for masker frequencies 0.5, 0.7, 0.9, 1.0 (on frequency), 1.1, and 1.6 times the probe frequency. Across the range of probe frequencies, the TMCs for on-frequency maskers showed two or three segments with clearly distinct slopes. If it is assumed that the rate of decay of the internal effect of the masker is constant across level and frequency, the variations in the slopes of the TMCs can be attributed to variations in cochlear compression. Compression-ratio estimates for on-frequency maskers were between 3:1 and 5:1 across the range of probe frequencies. Compression did not decrease at low frequencies. The slopes of the TMCs for the lowest frequency probe (500 Hz) did not change with masker frequency. This suggests that compression extends over a wide range of stimulus frequencies relative to characteristic frequency in the apical region of the cochlea.  相似文献   
4.
The active mechanism in the cochlea is thought to depend on the integrity of the outer hair cells (OHCs). Cochlear hearing loss is usually associated with damage to both inner hair cells (IHCs) and OHCs, with the latter resulting in a reduction in or complete loss of the function of the active mechanism. It is believed that the active mechanism contributes to the sharpness of tuning on the basilar membrane (BM) and is also responsible for compressive input-output functions on the BM. Hence, one would expect a close relationship between measures of sharpness of tuning and measures of compression. This idea was tested by comparing three different measures of the status of the active mechanism, at center frequencies of 2, 4, and 6 kHz, using subjects with normal hearing, with unilateral or highly asymmetric cochlear hearing loss, and with bilateral loss. The first measure, HLOHC, was an indirect measure of the amount of the hearing loss attributable to OHC damage; this was based on loudness matches between the two ears of subjects with unilateral hearing loss and was derived using a loudness model. The second measure was the equivalent rectangular bandwidth (ERB) of the auditory filter, which was estimated using the notched-noise method. The third measure was based on the slopes of growth-of-masking functions obtained in forward masking. The ratio of slopes for a masker centered well below the signal frequency and a masker centered at the signal frequency gives a measure of BM compression at the place corresponding to the signal frequency; a ratio close to 1 indicates little or no compression, while ratios less than 1 indicate that compression is occurring at the signal place. Generally, the results showed the expected pattern. The ERB tended to increase with increasing HLOHC. The ratio of the forward-masking slopes increased from about 0.3 to about 1 as HLOHC increased from 0 to 55 dB. The ratio of the slopes was highly correlated with the ERB (r = 0.92), indicating that the sharpness of the auditory filter decreases as the compression on the BM decreases.  相似文献   
5.
The Weber fraction was measured for a 25-ms sinusoidal pedestal presented 100 ms before, or 100 ms after, an intense narrow-band noise. Consistent with the finding of Zeng et al. [Hear. Res. 55, 223-230 (1991)], the forward masker caused an elevation in the Weber fraction at medium pedestal levels. Surprisingly, however, a much larger midlevel elevation was observed in the backward masking conditions; in some cases, the Weber fraction was increased by over 20 dB by the backward masker. In both masking conditions, presenting a notched noise simultaneously with the pedestal reduced the magnitude of the midlevel elevation. These results indicate that it is possible to produce large masking effects on intensity discrimination in conditions where there is no possibility of the masker affecting the representation of the pedestal at the level of the auditory nerve. This suggests that there may be "central" processes underlying the original finding of Zeng et al. Despite the similarities in the results, however, it is not certain that the elevations seen in the forward and backward masking conditions were caused by the same mechanisms.  相似文献   
6.
7.
Ciocca and Darwin [V. Ciocca and C. J. Darwin, J. Acoust. Soc. Am. 105, 2421-2430 (1999)] reported that the shift in residue pitch caused by mistuning a single harmonic (the fourth out of the first 12) was the same when the mistuned harmonic was presented after the remainder of the complex as when it was simultaneous, even though subjects were asked to ignore the pure-tone percept. The present study tried to replicate this result, and investigated the role of the presence of the nominally mistuned harmonic in the matching sound. Subjects adjusted a "matching" sound so that its pitch equaled that of a subsequent 90-ms complex tone (12 harmonics of a 155-Hz F0), whose mistuned (+/-3%) third harmonic was presented either simultaneously with or after the remaining harmonics. In experiment 1, the matching sound was a harmonic complex whose third harmonic was either present or absent. In experiments 2A and 2B, the target and matching sound had nonoverlapping spectra. Pitch shifts were reduced both when the mistuned component was nonsimultaneous, and when the third harmonic was absent in the matching sound. The results indicate a shorter than originally estimated time window for obligatory integration of nonsimultaneous components into a virtual pitch.  相似文献   
8.
Psychophysical estimates of cochlear function suggest that normal-hearing listeners exhibit a compressive basilar-membrane (BM) response. Listeners with moderate to severe sensorineural hearing loss may exhibit a linearized BM response along with reduced gain, suggesting the loss of an active cochlear mechanism. This study investigated how the BM response changes with increasing hearing loss by comparing psychophysical measures of BM compression and gain for normal-hearing listeners with those for listeners who have mild to moderate sensorineural hearing loss. Data were collected from 16 normal-hearing listeners and 12 ears from 9 hearing-impaired listeners. The forward masker level required to mask a fixed low-level, 4000-Hz signal was measured as a function of the masker-signal interval using a masker frequency of either 2200 or 4000 Hz. These plots are known as temporal masking curves (TMCs). BM response functions derived from the TMCs showed a systematic reduction in gain with degree of hearing loss. Contrary to current thinking, however, no clear relationship was found between maximum compression and absolute threshold.  相似文献   
9.
10.
A two-alternative forced-choice task was used to measure psychometric functions for the detection of temporal gaps in a 1-kHz, 400-ms sinusoidal signal. The signal always started and finished at a positive-going zero crossing, and the gap duration was varied from 0.5 to 6.0 ms in 0.5-ms steps. The signal level was 80 dB SPL, and a spectrally shaped noise was used to mask splatter associated with the abrupt onset and offset of the signal. Two subjects with normal hearing, two subjects with unilateral cochlear hearing loss, and two subjects with bilateral cochlear hearing loss were tested. The impaired ears had confirmed reductions in frequency selectivity at 1 kHz. For the normal ears, the psychometric functions were nonmonotonic, showing minima for gap durations corresponding to integer multiples of the signal period (n ms, where n is a positive integer) and maxima for durations corresponding to (n - 0.5) ms. For the impaired ears, the psychometric functions showed only small (nonsignificant) nonmonotonicities. Performance overall was slightly worse for the impaired than for the normal ears. The main features of the results could be accounted for using a model consisting of a bandpass filter (the auditory filter), a square-law device, and a sliding temporal integrator. Consistent with the data, the model demonstrates that, although a broader auditory filter has a faster transient response, this does not necessarily lead to improved performance in a gap detection task. The model also indicates that gap thresholds do not provide a direct measure of temporal resolution, since they depend at least partly on intensity resolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号