首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
物理学   4篇
  2016年   2篇
  2013年   1篇
  2002年   1篇
排序方式: 共有4条查询结果,搜索用时 10 毫秒
1
1.
BACKGROUND AND PURPOSE: The stage at which normal appearing white matter (NAWM) abnormalities first appear in multiple sclerosis (MS) is not clear. The aim of our study was to monitor water diffusion changes over time in NAWM of patients with early MS.METHODS: Out of a consecutive series of patients enrolled in a MR study on clinically isolated syndrome (CIS), we selected 19 subjects who had completed a one year follow-up. The MR scans obtained at baseline and at 12 months were reviewed according to the new criteria on the diagnosis of MS. Lesion load on T2 and T1 weighted images and the trace of the apparent diffusion coefficient in NAWM were measured both at baseline and at 12 months in patients and in 12 healthy controls.RESULTS: In three patients the diagnosis of MS was done at baseline based on MR. Thirteen patients developed MS during the study and in three patients the diagnosis remained "possible MS." TADC in NAWM in patients was significantly higher than in controls at the 12 months' follow-up but not at baseline (controls mean tADC +/- sd = 0.745 +/- 0.02 mm(2)/sec x 10(-3); patients mean tADC(12) +/- sd = 0.767 +/- 0.02 mm(2)/sec x 10(-3); p < 0.02). TADC and T2 lesion load at 12 months were significantly correlated (p < 0.01). Patients exhibiting tADC(12) above a confidence interval had a significantly greater EDSS score at the same time period (EDSS(12) +/- sd = 1.9 +/- 0.5 and = 1.1 +/- 0.4 respectively; p < 0.01).CONCLUSIONS: This study suggests that diffusion MR cannot detect alterations in NAWM of patients with a CIS suggestive of MS. After one year, when most patients develop MS, diffusion MR abnormalities in NAWM become apparent. These abnormalities are correlated with T2 lesion load and may contribute to neurological impairment.  相似文献   
2.
A mechanism capable to provide a natural solution to two major cosmological problems, i.e. the cosmic acceleration and the coincidence problem, is proposed. A specific brane–bulk energy exchange mechanism produces a total dark pressure, arising when adding all normal to the brane negative pressures in the interior of galactic core black holes. This astrophysically produced negative dark pressure explains cosmic acceleration and why the dark energy today is of the same order to the matter density for a wide range of the involved parameters. An exciting result of the analysis is that the recent rise of the galactic core black hole mass density causes the recent passage from cosmic deceleration to acceleration. Finally, it is worth mentioning that this work corrects a wide spread fallacy among brane cosmologists, i.e. that escaping gravitons result in positive dark pressure.  相似文献   
3.
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号