首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   1篇
物理学   1篇
  2013年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 368 毫秒
1
1.
Atmospheric ozone is formed by the O + O(2) exchange reaction followed by collisional stabilization of the O(3)(?) intermediate. The dynamics of the O + O(2) reaction and to a lesser extent the O(3) stabilization depend sensitively on the underlying potential energy surface, particularly in the asymptotic region. Highly accurate Davidson corrected multi-state multi-reference configuration interaction calculations reported here reveal that the minimal energy path for the formation of O(3) from O + O(2) is a monotonically decaying function of the atom-diatom distance and contains no "reef" feature found in previous ab initio calculations. The absence of a submerged barrier leads to an exchange rate constant with the correct temperature dependence and is in better agreement with experiment, as shown by quantum scattering calculations.  相似文献   
2.
ABSTRACT

Understanding molecular systems with complex multi-configurational bonding has been of interest to both experimentalists and theoreticians for many years. High level dynamically weighted MRCI calculations were used to generate accurate potential energy curves for the triplet ground state 3Σ?, and triplet excited states up to (4 3Σ?, 4 3Π and 1 3Δ) and quintet (1 5Σ? and 1 5Π) states up to 50,000 cm?1 above the ground state minimum. The lowest four 3Π states of magnesium mono-carbide (MgC) are strongly coupled leading to lifetimes that are shortened by pre-dissociation for most of the vibronic states. Non-adiabatic derivative couplings between the 3Π states were used to determine diabatic potential energy curves. The state mixing role of spin–orbit coupling, which is much weaker than the non-adiabatic interactions, is discussed. A coupled vibronic Hamiltonian was solved to compute and assign strongly mixed vibronic states. The results are compared and contrasted with the valence iso-electronic beryllium carbide (BeC) system whose results were published earlier [B.J. Barker, I.O. Antonov, J.M. Merritt, V.E. Bondybey, M.C. Heaven, and R. Dawes, J. Chem. Phys. 137, 214313 (2012)]. Transitions, spectroscopic constants and band origins are expected to aid experimental detection of MgC in the future.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号