首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   4篇
化学   19篇
物理学   5篇
  2021年   1篇
  2020年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  1989年   1篇
  1934年   2篇
排序方式: 共有24条查询结果,搜索用时 140 毫秒
1.
New salts based on imidazolium, pyrrolidinium, phosphonium, guanidinium, and ammonium cations together with the 5‐cyanotetrazolide anion [C2N5]? are reported. Depending on the nature of cation–anion interactions, characterized by XRD, the ionic liquids (ILs) have a low viscosity and are liquid at room temperature or have higher melting temperatures. Thermogravimetric analysis, cyclic voltammetry, viscosimetry, and impedance spectroscopy display a thermal stability up to 230 °C, an electrochemical window of 4.5 V, a viscosity of 25 mPa s at 20 °C, and an ionic conductivity of 5.4 mS cm?1 at 20 °C for the IL 1‐butyl‐1‐methylpyrrolidinium 5‐cyanotetrazolide [BMPyr][C2N5]. On the basis of these results, the synthesized compounds are promising electrolytes for lithium‐ion batteries.  相似文献   
2.
3.
Investigations on the Staudinger reaction between 1,8‐diazidonaphthalene and phosphorous(III) building blocks, a key step in the synthesis of superbasic bisphosphazene proton sponges, yielded a set of bisphosphazides with a constrained geometry 1,8‐disubstituted naphthalene backbone. This compound class has attracted our interest not only due to their surprisingly high stability, but in particular because of their theoretically predicted basicity in the range of their bisphosphazene analogues that can be referred to the constrained geometry interaction of two highly basic nitrogen atoms. Eleven new bisphosphazides bearing simple P‐amino groups as well as P‐guanidino substituents, azaphosphatrane moieties, P2 building blocks, or chiral P‐amino substituents derived from L ‐proline are presented. They were studied concerning their spectroscopic properties and partly also their chromophoric and structural features. In the case of the pyrrolidino‐substituted TPPN(2N2) (TPPN=1,8‐bis(trispyrrolidinophosphazenyl)naphthalene), the stepwise nitrogen elimination is investigated theoretically and experimentally, which led to the isolation and structural characterization of TPPN(1N2) bearing a phosphazide and a phosphazene functionality in one molecule. Attempts to protonate the obtained bisphosphazides and to prove the computationally predicted pKBH+ values through NMR titration reactions resulted in their decay, which again was rationalized by theoretical calculations. Altogether we present the so far most extensive spectroscopic, structural and theoretical investigation of constrained geometry bisphosphazides and their Brønsted and Lewis basic properties.  相似文献   
4.
5.
6.
The effect of hydrogen bonding on the rotational correlation time of an H-bond acceptor, pyridine N-oxide-d(5), in various solvents was investigated using the (2)H spin-lattice relaxation time (T(1)). The results demonstrate a linear relationship between viscosity and measured rotational correlation times, an example of Stokes-Einstein-Debye behavior. The results also clearly demonstrate reduced rotational rates for the probe in hydrogen bonding solvents in comparison to solvents incapable of forming hydrogen bonds with the probe. The utility of this observation was exploited to estimate the association constant (K(a)) through an NMR titration procedure. These results are presented as a new technique that can be applied to the characterization of hydrogen bonding in similar systems.  相似文献   
7.
Batchelor  M. T.  Guan  X.-W.  Oelkers  N.  Ying  Z.-J. 《Journal of statistical physics》2004,116(1-4):571-589
We investigate the quantum phase diagram of the exactly solved mixed spin-(1/2,1) ladder via the thermodynamic Bethe ansatz (TBA). In the absence of a magnetic field the model exhibits three quantum phases associated with su(2), su(4), and su(6) symmetries. In the presence of a strong magnetic field, there is a third and full saturation magnetization plateaux within the strong antiferromagnetic rung coupling regime. Gapless and gapped phases appear in turn as the magnetic field increases. For weak rung coupling, the fractional magnetization plateau vanishs and the model undergoes new quantum phase transitions. However, in the ferromagnetic coupling regime, the system does not have a third saturation magnetization plateau. The critical behaviour in the vicinity of the critical points is also derived systematically using the TBA.  相似文献   
8.
The chemistry of coinage metal bis(triflyl)imides of technological interest, CuNTf2 and AgNTf2, their synthesis and complexes with excess of comparatively weakly coordinating NTf2? as well as with ether, olefins, and the arene mesitylene are described. The existence of the solvent‐free pure phase [CuNTf2] has not been evidenced so far. Contrary to the literature, in which the preparation of [CuNTf2] is supposed to be carried out by reacting mesityl copper, [Cu(Mes)]5, and HNTf2, we found that in fact this reaction leads reproducibly to the interesting copper diarene sandwich complex [Cu(η3‐MesH)2][Cu(NTf2)2] ( 1 ) (MesH=1,3,5‐trimethylbenzene). The unexpectedly stable molecular etherate [Cu(Et2O)(NTf2)] ( 2 ) turned out to be the best precursor for CuNTf2 having only an inert and easily exchangeable solvent ligand. The coordination mode of NTf2? in 1 and 2 as well as in the hitherto unknown crystalline phase of [AgNTf2] ( 3 ) is described. The complex formation, which takes place when dissolving 2 or 3 in the room temperature ionic liquid (RTIL) [emim]NTf2 ([emim]+=1‐ethyl‐3‐methylimidazolium), has been studied. Furthermore, the reaction of 1 – 3 towards the diolefins 1,5‐cyclooctadiene (COD), 2,5‐norbornadiene (NBD) and isoprene (2‐methylbuta‐1,3‐diene) and towards ethylene has been investigated. The products 4 – 13 of these conversions have been isolated and fully characterized by NMR‐ and IR spectroscopies, mass spectrometry, and elemental‐ and XRD analyses. The potential of [Cu(η3‐MesH)2][Cu(NTf2)2] ( 1 ), [Cu(Et2O)(NTf2)] ( 2 ) and [AgNTf2] ( 3 ) as well as of [emim][M(NTf2)2] (M=Cu 4 , Ag 5 ) as chemisorbers for ethylene was studied by NMR spectroscopy.  相似文献   
9.
The precipitation of lanthanum and neodymium phosphate phases from supersaturated aqueous solutions at pH ~1.9 was studied at 5, 25, 50, and 100 °C in batch reactors for up to 168 h. Crystalline La and Nd–rhabdophane phases precipitated immediately upon mixing of the initial aqueous La or Nd and PO4 solutions. Changes in aqueous PO4 and Rare Earth Element (REE) concentrations during the experiments were determined by ICP-MS and UV–Vis spectrophotometry, while the resulting solids were characterized via powder XRD, SEM, TEM, and FTIR. All precipitated crystals exhibited a nano-rod morphology and their initial size depended on temperature and REE identity. At 5 °C and immediately after mixing the La and Nd–rhabdophane crystals averaged ~44 and 40 nm in length, respectively, while at 100 °C lengths were ~105 and 94 nm. After 168 h of reaction, the average length of the La and Nd rhabdophanes increased by 23 and 53% at 5 °C and 11 and 59% at 100 °C, respectively. The initial reactive solutions in all experiments had activity quotients for rhabdophane precipitation: \textREE 3+ + \textPO43 - + n\textH2 \textO = \textREEPO4 ·  n\textH2 \textO {\text{REE}}^{ 3+ } + {\text{PO}}_{4}^{3 - } + n{\text{H}}_{2} {\text{O}} = {\text{REEPO}}_{4} \cdot\;n{\text{H}}_{2} {\text{O}} of ~10−20.5. This activity quotient decreased with time, consistent with rhabdophane precipitation. The rapid equilibration of rhabdophane supersaturated solutions and the progressive rhabdophane crystal growth observed suggests that the REE concentrations of many natural waters may be buffered by rhabdophane precipitation. In addition, this data can be used to guide crystallization reactions in industrial processes where monodisperse and crystalline La or Nd rhabdophane materials are the target.  相似文献   
10.
Bismetallocenes [Cp2LuReCp2] and [Cp*2LaReCp2] (Cp=cyclopentadienyl; Cp*=pentamethylcyclopentadienyl) were prepared using different synthetic strategies. Salt metathesis—performed in aromatic hydrocarbons to avoid degradation pathways caused by THF—were identified as an attractive alternative to alkane elimination. Although alkane elimination is more attractive in the sense of its less elaborate workup, the rate of the reaction shows a strong dependence on the ionic radius of Ln3+ (Ln=lanthanide) within a given ligand set. Steric hindrance can cause a dramatic decrease in the reaction rate of alkane elimination. In this case, salt metathesis should be considered the better alternative. Covalent bonding interactions between the Ln and transition‐metal (TM) cations has been quantified on the basis of the delocalization index. Its magnitude lies within the range characteristic for bonds between transition metals. Secondary interactions were identified between carbon atoms of the Cp ligand of the transition metal and the Ln cation. Model calculations clearly indicated that the size of these interactions depends on the capability of the TM atom to act as an electron donor (i.e., a Lewis base). The consequences can even be derived from structural details. The observed clear dependency of the Lu?Ru and interfragment Lu?C bonding on the THF coordination of the Lu atom points to a tunable Lewis acidity at the Ln site, which provides a method of significantly influencing the structure and the interfragment bonding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号