首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
化学   4篇
数学   2篇
物理学   1篇
  2020年   2篇
  2019年   1篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
In this note, we introduce the notion of multispectrum over a local monoid. We define inductive limits of multispectra and derive their main properties.  相似文献   
2.
The possible isomers of [Mg(NH3)n = 1 − 10]+ clusters have been investigated using both M06-2X/6-31++G(d,p) and MP2/6-31++G(d,p) levels of theory. The isomeric distribution for each n size has been studied as a function of temperatures ranging from 25 to 400 K. To the best of our knowledge, for clusters size n > 6, this is the first theoretical study available in the literature. From the calculated values in the considered clusters and using a fitting procedure, we have evaluated the binding energies (−14.0 kcal/mol), clustering energies (−10.1 kcal/mol), clustering free energies (−2.8 kcal/mol), and clustering enthalpies (−10.3 kcal/mol). On the basis of our structural and infrared (IR) spectroscopy outcomes, we find that the first solvation shell can hold up to six ammonia molecules. © 2019 Wiley Periodicals, Inc.  相似文献   
3.
We describe a new class of silicone‐containing peptide polymers obtained by a straightforward polymerization in water using tailored chlorodimethylsilyl peptide blocks as monomeric units. This general strategy is applicable to any type of peptide sequences, yielding linear or branched polymer chains composed of well‐defined peptide sequences.  相似文献   
4.
In this note, we modify the“classical”theory of sheaves, in such a way that it includes applications where more than one restriction map between sections is needed.  相似文献   
5.
The paper details the characterization of thin magnetic materials layers, particularly soft materials, with respect to their behaviour in frequency (from 10 MHz to 1 GHz). The proposed method is suitable for any soft but insulating magnetic material; Yttrium Iron Garnet (YIG) is used as an example. The principle is based on a comparison between simulations for different values of the permeability and measurement values versus frequency of planar inductor structures; an experimental validation is proposed as well. Thin magnetic material is first deposited on an alumina substrate using RF sputtering technique; a planar spiral winding of copper is then deposited on the magnetic material by the same technique. The effective permeability versus frequency is obtained by comparing two samples of spiral windings with and without magnetic material. Network analyser measurements on samples of various geometrical dimensions and of different thicknesses are necessary to determine the effective magnetic permeability; we have obtained a relative effective permeability of about 30 for seven turns spiral inductor of a 17 μm YIG film.  相似文献   
6.
The hydrogen bond network of ethanol clusters is among the most complex hydrogen bond networks of molecular clusters. One of the reasons of its complexity arises from the number of possible ethanol monomers (there are three isoenergetic isomers of the ethanol monomer). This leads to difficulties in the exploration of potential energy surfaces (PESs) of ethanol clusters. In this work, we have explored the PES of the ethanol hexamer at the MP2/aug-cc-pVDZ level of theory. We have provided structures and their relative stability at 0 K and for temperatures ranging from 20 to 400 K in the gas phase. These structures are used to compute the theoretical infrared (IR) spectrum of the ethanol hexamer at the MP2/aug-cc-pVDZ level of theory. As a result, 98 different structures have been investigated, and six isomers are reported to be the most isoenergetically stable structures of the ethanol hexamer. These isomers are folded cyclic structures in which the stability is enhanced by the implication of CH⋯O interactions. Our investigations show that the PES of the ethanol hexamer is very flat, yielding several isoenergetic structures. Furthermore, we have noted that several isomers contribute to the population of the ethanol hexamer at high temperatures. As far as the IR spectroscopic study is concerned, we have found that the IR spectra of the most stable structures are in good agreement with the experiment. Considering this agreement, these structures are used to assign the experimental peaks in the CH-stretching region. We concluded that the stability of the structures of the ethanol hexamer is related both to OH⋯O hydrogen bonds and CH⋯O interactions. Overall, we have found that the IR spectrum of the ethanol hexamer, calculated from the contribution of all the possible stable structures weighted by their probability, excellently reproduce the experimental spectrum of the ethanol hexamer.  相似文献   
7.
The absolute solvation energies (free energies and enthalpies) of the proton in ammonia are used to compute the pKa of species embedded in ammonia. They are also used to compute the solvation energies of other ions in ammonia. Despite their importance, it is not possible to determine experimentally the solvation energies of the proton in a given solvent. We propose in this work a direct approach to compute the solvation energies of the proton in ammonia from large-sized neutral and protonated ammonia clusters. To undertake this investigation, we performed a geometry optimization of neutral and protonated ammonia 30-mer, 40-mer, and 50 mer to locate stable structures. These structures have been fully optimized at both APFD/6-31++g(d,p) and M06-2X/6-31++g(d,p) levels of theory. An infrared spectroscopic study of these structures has been provided to assess the reliability of our investigation. Using these structures, we have computed the absolute solvation free energy and the absolute solvation enthalpy of the proton in ammonia. It comes out that the absolute solvation free energy of the proton in ammonia is calculated to be −1192 kJ mol–1, whereas the absolute solvation enthalpy is evaluated to be −1214 kJ mol–1. © 2019 Wiley Periodicals, Inc.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号