首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
化学   3篇
力学   1篇
数学   1篇
物理学   16篇
  2013年   9篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
We report on the novel application of nanoscratch characterization to provide insight into the plasticity mechanisms responsible for the behaviour of composites. Accordingly, we conduct deformation characterization with nanoscratch testing (DCNT) to study the deformation behaviour of two B4C reinforced ultrafine grained Al alloy tri-modal composites with average B4C particle sizes of ~1–6?μm and ~500?nm, respectively. To highlight the type of mechanistic information revealed in a DCNT study of composites, we concentrate on the influence of B4C particle size on deformation mechanisms.  相似文献   
2.
3.
4.
The variations in the chemical compositions of the metallic glasses reported in the literature, as well as the overall lack of experimental data concerning the inhomogeneous deformation behaviour of metallic glass, make the evaluation of the effects of shear band/fracture behaviour on the mechanical properties of metallic glasses difficult. Isolating the effect of local shear band formation on bulk inhomogeneous flow would appear to be a first step in approaching this problem. The mechanical behaviour of Vitreloy metallic glass at room temperature and at various strain rates in tension and compression was investigated. The formation of multiple shear bands was observed at high strain rates. An increase in strain rate leads to enhanced ductility in tension and compression. Some aspects of the deformation processes in tension and compression are discussed.  相似文献   
5.
An Al85Ni10La5 amorphous alloy, produced via gas atomization, was selected to study the mechanisms of nanocrystallization induced by thermal exposure. High resolution transmission electron microscopy results indicated the presence of quenched-in Al nuclei in the amorphous matrix of the atomized powder. However, a eutectic-like reaction, which involved the formation of the Al, Al11La3, and Al3Ni phases, was recorded in the first crystallization event (263°C) during differential scanning calorimetry continuous heating. Isothermal annealing experiments conducted below 263°C revealed that the formation of single fcc-Al phase occurred at 235°C. At higher temperatures, growth of the Al crystals occurred with formation of intermetallic phases, leading to a eutectic-like transformation behaviour at 263°C. During the first crystallization stage, nanocrystals were developed in the size range of 5 ~ 30 nm. During the second crystallization event (283°C), a bimodal size distribution of nanocrystals was formed with the smaller size in the range of around 10 ~ 30 nm and the larger size around 100 nm. The influence of pre-existing quenched-in Al nuclei on the microstructural evolution in the amorphous Al85Ni10La5 alloy is discussed and the effect of the microstructural evolution on the hardening behaviour is described in detail.  相似文献   
6.
The commercial aluminium alloy 5083 was processed via cryomilling to produce nanocrystalline (NC) powders with an average grain size of ~25–50?nm. The powders were subsequently degassed at 723 K (450°C), pre-heated and immediately quasi-isostatic (QI)-forged to produce a thermally stable bulk ultrafine grain (UFG) material having average grain size values ranging from 190 to 350?nm, depending on the processing conditions used. In this paper, the tensile properties and fracture behaviour of the bulk UFG material are presented and compared with the tensile properties of its conventionally processed counterpart. The specific influence of preheat temperature on strength and ductility of the alloy is briefly discussed. Three different pre-heat temperatures of 523, 623 and 723?K (250, 350 and 450°C) were chosen and used with the primary objective of controlling grain growth during forging. The influence of preheat temperature on tensile deformation and final fracture behaviour is highlighted. The macroscopic fracture modes of the bulk nanostructured material (BNM) prepared following three pre-heat temperatures are investigated. The microscopic mechanisms controlling tensile deformation and final fracture behaviour are discussed with regards to the intrinsic microstructural effects in the UFG alloy, nature of loading, and the kinetics and mechanisms of deformation.  相似文献   
7.
This paper presents experimental results on the application of Microsecond Plasma Opening Switch (MPOS) technology to Al alloy surface modification. The main objective of the experiments presented here was to study the change in the tensile and fatigue properties of the MPOS-treated Al2024, Al7075 alloy samples. The bending fatigue test was carried out both in air and in corrosive media. The measurements indicate significant improvement of fatigue properties for the treated 7075 alloy in corrosive media (1.5 times higher in fatigue limit). For the 2024 alloy the enhancement in fatigue lifetime for higher stresses was measured. Anodic polarization curve measurements were carried out at various values of fatigue cycles.  相似文献   
8.
9.

An Al-7.6 at.% Mg alloy was ball milled in liquid N2 for 8 h and its microstructures were investigated using transmission electron microscopy. Electron diffraction confirmed that the resulting powder is a supersaturated Al-Mg solid solution with an fcc structure. Three typical nanostructures with different grain-size ranges and shapes were observed and the deformation mechanisms in these structures were found to be different. High densities of dislocations were found in large crystallites, implying that dislocation slip is the dominant deformation mechanism. The dislocations rearranged to form small-angle subboundaries upon further deformation, resulting in the formation of medium-sized crystallites with diameters of 10-30 nm. In very small crystallites with dimensions less than 10 nm, twinning becomes an important deformation mechanism. The reasons for the different deformation mechanisms were discussed. Some defects, such as twin boundaries, and small- and large-angle grain boundaries were investigated in detail.  相似文献   
10.
Adsorption ability and reaction rate are two essential parameters that define the efficiency of a catalyst. Herein, we implement density functional theory (DFT) and report that CO can be oxidized by a pyramidal Cu cluster with an associated reaction barrier Eb=1.317 eV. In this case, our transition state calculations reveal that the barrier can be significantly lowered after superimposing a negative electric field. Moreover, when the field intensity corresponds to F=?0.010 au, the magnitude of Eb=0.698 eV is equivalent to—or lower than—those of typical catalysts such as Pt, Rh, and Pd. The superimposition of a positive field is found to enhance the release of the nascent CO2 molecule. Our study demonstrates that small Cu clusters have better adsorption ability than the corresponding flat surface while the field can be used to enhance the purification of the exhaust gas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号