首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
物理学   2篇
  2009年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
This paper introduces a parallel measurement approach for fast infrared-based human temperature screening suitable for use in a large public area. Our key idea is based on the combination of simple image processing algorithms, infrared technology, and human flow management. With this multidisciplinary concept, we arrange as many people as possible in a two-dimensional space in front of a thermal imaging camera and then highlight all human facial areas through simple image filtering, image morphological, and particle analysis processes. In this way, an individual’s face in live thermal image can be located and the maximum facial skin temperature can be monitored and displayed. Our experiment shows a measured 1 ms processing time in highlighting all human face areas. With a thermal imaging camera having an FOV lens of 24° × 18° and 320 × 240 active pixels, the maximum facial skin temperatures from three people’s faces located at 1.3 m from the camera can also be simultaneously monitored and displayed in a measured rate of 31 fps, limited by the looping process in determining coordinates of all faces. For our 3-day test under the ambient temperature of 24–30 °C, 57–72% relative humidity, and weak wind from the outside hospital building, hyperthermic patients can be identified with 100% sensitivity and 36.4% specificity when the temperature threshold level and the offset temperature value are appropriately chosen. Appropriately locating our system away from the building doors, air conditioners and electric fans in order to eliminate wind blow coming toward the camera lens can significantly help improve our system specificity.  相似文献   
2.
This paper proposes 1 × N add-drop filter structures in which only one thin-film filter (TF) is used. Our key idea is based on a combination of an angle-multiplexing concept and the flexibility of the optical fiber to allow a multiwavelength optical beam hit the TF several times, each time at a different angle but same position. Due to the TF angle sensitivity, the desired wavelength optical beam corresponding to the incident angle is therefore spatially isolated from the main optical beam. Our first TF-based 1 × N add-drop filter structure is arranged in a reflective design in which N wavelength optical beams can be dropped out from the main channel. For our transmissive architecture, N − 2 channels are directed to their associated output terminals while the remaining λN−1 and λN wavelength optical beams are sent out at the same port. Experimental proof of concept for our reflective TF-based 1 × 3 add-drop filter using one off-the-shelf TF, a triple fiber-optic collimator, and an optical circulator separates two wavelength optical beams with their channel spacing of 0.8 nm from the main channel. In this case, measured optical losses of 0.67 dB, 1.66 dB, and 2.59 dB are obtained for the first, the second, and the remaining dropped wavelength optical beams, respectively. Optical crosstalk and polarization dependent loss of <−18 dB and <0.08 dB are also investigated, respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号