首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   5篇
数学   1篇
物理学   1篇
  2018年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Three polysaccharide-based chiral stationary phases, Sepapak® 1, Sepapak® 2 and Sepapak® 3 have been evaluated in the present work for the stereoisomer separation of a group of 12 flavonoids including flavanones (flavanone, 4′-methoxyflavanone, 6-methoxyflavanone, 7-methoxyflavanone, 2′-hydroxyflavanone, 4′-hydroxyflavanone, 6-hydroxyflavanone, 7-hydroxyflavanone, hesperetin, naringenin) and flavanone glycosides (hesperidin, naringin) by nano-liquid chromatography (nano-LC). The behaviour of these chiral stationary phases (CSPs) towards the selected compounds was studied in capillary columns (100 μm internal diameter (i.d.)) packed with the above mentioned CSPs using polar organic, reversed and normal elution modes. The influence of nature and composition of the mobile phase in terms of concentration and type of organic modifier, buffer type and water content (reversed phase elution mode) on the enantioresolution (Rs), retention factor (k) and enantioselectivity (α) was evaluated. Sepapak® 3 showed the best chromatographic results in terms of enantioresolution, enantioselectivity and short analysis time, employing a polar organic phase mode. A mixture of methanol/isopropanol (20/80, v/v) as mobile phase enabled the chiral separation of eight flavanones with enantioresolution factor (Rs) in the range 1.15–4.18. The same analytes were also resolved employing reversed and normal phase modes with mixtures of methanol/water and hexane/ethanol at different ratios as mobile phases, respectively. Loss in resolution for some compounds, broaden peaks and longer analysis times were observed with these last two chromatographic elution modes.  相似文献   
2.
In order to study the effect of the nature and the length of the spacer, three mixed 10-undecenoate/phenylcarbamate derivatives of β-cyclodextrin have been prepared and linked to allylsilica gel by means of a radical reaction. The chiral recognition ability of the resulting materials, when used as liquid chromatography chiral stationary phases (CSPs), was evaluated using heptane and either 2-propanol or chloroform as organic mobile-phase modifiers. A large variety of racemic compounds have been separated successfully on these CSPs (mainly pharmaceuticals and herbicides). Optimization of these separations was discussed in terms of mobile-phase composition and structural patterns of the injected analytes. The efficiencies of the three prepared materials were compared to those of previously described perphenylated-β-cyclodextrin column and to analogous cellulose derivative-based CSPs. Schematic illustration of the b-cyclodextrin/mandelic acid inclusion complex  相似文献   
3.
A phenylcarbamate derivative of 2-hydroxypropyl-beta-CD bonded stationary phase was prepared by a previously described method. Its enantiomeric recognition abilities were evaluated as chiral stationary phase (CSP) in normal, polar organic and RP conditions by HPLC. The relevant structural features of the prepared stationary phase which make it an effective chiral selector are discussed. This material seems to have an excellent enantioselectivity for a variety of racemic analytes in the three modes. Hence it can be considered a highly effective multimodal column. Retention factor (k), selectivity (alpha) and resolution (R(s)) were the chosen parameters to describe the column performance. Optimization of these separations was discussed in terms of mobile phase composition, flow rate and structural patterns of the injected analytes.  相似文献   
4.
Given a simple and finite connected graph G, the distance dG(u,v) is the length of the shortest induced {u,v}-path linking the vertices u and v in G. Bandelt and Mulder [H.J. Bandelt, H.M. Mulder, Distance hereditary graphs, J. Combin. Theory Ser. B 41 (1986) 182-208] have characterized the class of distance hereditary graphs where the distance is preserved in each connected induced subgraph. In this paper, we are interested in the class of k-distance hereditary graphs (kN) which consists in a parametric extension of the distance heredity notion. We allow the distance in each connected induced subgraph to increase by at most k. We provide a characterization of k-distance hereditary graphs in terms of forbidden configurations for each k≥2.  相似文献   
5.
In this paper a phenyl-carbamate-propyl-β-cyclodextrin stationary phase was employed for the enantioseparation of several flavonoids, including flavanones and methoxyflavanones by using nano-liquid chromatography (nano-LC). The same stationary phase was also used for the diastereoisomeric separation of two flavanone glycosides. The compounds: flavanone, 2′-hydroxyflavanone, 4′-hydroxyflavanone, 6-hydroxyflavanone, 7-hydroxyflavanone, 4′-methoxyflavanone, 6-methoxyflavanone, 7-methoxyflavanone, hesperetin, hesperidin, naringenin and naringin were studied using reversed, polar organic and normal elution modes. The effect of the nature and composition of the mobile phase (organic modifier type, buffer and water content in the reversed phase mode) on the enantioresolution (Rs), retention factor (k) and enantioselectivity (α) were investigated. Baseline resolution of all studied flavonoids, with the exception of 2′-hydroxyflavanone and naringin, was achieved in reversed phase mode using a mixture of MeOH/H2O at different ratios as mobile phase. Good results, in terms of peak efficiency and short analysis time, were obtained adding 1% triethylammonium acetate pH 4.5 buffer to MeOH/H2O mixture. The separation of the studied compounds was also performed in polar organic mode. By using 100% of MeOH as mobile phase, the resolution was achieved for the studied analytes, except for 7-hydroxyflavanone, 2′-hydroxyflavanone, naringenin, hesperidin and naringin. Normal mode was tested employing a mixture of EtOH/hexane/TFA as mobile phase achieving the enantiomeric and diastereomeric separation of only hesperetin and hesperidin, respectively. The use of nano-LC technique for the resolution of flavanones optical isomers allowed to achieve good resolutions in shorter analysis time compared to the results reported in literature with conventional HPLC.  相似文献   
6.
In this study, the retention and selectivity of a mixture of basic polar drugs were investigated in hydrophilic interaction chromatographic conditions (HILIC) using nano-liquid chromatography (nano-LC). Six sympathomimetic drugs including ephedrine, norephedrine, synephrine, epinephrine, norepinephrine and norphenylephrine were separated by changing experimental parameters such as stationary phase, acetonitrile (ACN) content, buffer pH and concentration, column temperature. Four polar stationary phases (i.e. cyano-, diol-, aminopropyl-silica and Luna HILIC, a cross-linked diol phase) were selected and packed into fused silica capillary columns of 100 μm internal diameter (i.d.). Among the four stationary phases investigated a complete separation of the all studied compounds was achieved with aminopropyl silica and Luna HILIC stationary phases only. Best chromatographic results were obtained employing a mobile phase composed by ACN/water (92/8, v/v) containing 10 mM ammonium formate buffer pH 3. The influence of the capillary temperature on the resolution of the polar basic drugs was investigated in the range between 10 and 50 °C. Linear correlation of ln k vs. 1/T was observed for all the columns; ΔH° values were negative with Luna HILIC and positive with aminopropyl- and diol-silica stationary phases, demonstrating that different mechanisms were involved in the separation.To compare the chromatographic performance of the different columns, Van Deemter curves were also investigated.  相似文献   
7.
A great number of piezoelectric materials which could be used in the fabrication of BAW resonators were investigated via colored picosecond acoustics technique in order to study the required parameters for designing and fabricating improved devices. These parameters concerns acoustic longitudinal velocity, vL, elastic stiffness constant, CD33, intrinsic mechanical loss, tanδ, and electromechanical coupling coefficient, k2t. We first quantify the effect of the ratio between the wavelength pulse of a femtosecond laser and the period of Brillouin oscillations, λp/T. It is found that CD33 depends linearly on λp/T. Then, we deduced novel relations for stiffness constant and mechanical coupling coefficient. Moreover, the determination of different parameters (density, refractive index and vL) of piezoelectric film is achieved, with good agreement with literature. The optimized conditions for the parameter choice of BAW resonators are found to be: 300?GPa?<?CD33?<?500?GPa and 1.7?GPa?<?e233/εs33?<?28.5?GPa with λp/T?>?37 103?m/s where e33 and εs33 are the piezoelectric constant and the materials permittivity in the direction 3, respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号