首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   31篇
  国内免费   3篇
化学   304篇
晶体学   1篇
力学   2篇
数学   36篇
物理学   46篇
  2023年   9篇
  2022年   1篇
  2021年   12篇
  2020年   9篇
  2019年   10篇
  2018年   8篇
  2017年   3篇
  2016年   10篇
  2015年   17篇
  2014年   15篇
  2013年   29篇
  2012年   19篇
  2011年   27篇
  2010年   15篇
  2009年   18篇
  2008年   23篇
  2007年   28篇
  2006年   32篇
  2005年   24篇
  2004年   19篇
  2003年   16篇
  2002年   8篇
  2001年   8篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1992年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1981年   3篇
  1977年   1篇
  1976年   1篇
  1970年   1篇
排序方式: 共有389条查询结果,搜索用时 16 毫秒
1.
For a real Enriques surface Y we prove that every homology class in H1(Y (R), Z/2) can be represented by a real algebraic curve if and only if all connected components of Y(R) are orientable. Furthermore, we give a characterization of real Enriques surfaces which are Galois-Maximal and/or Z-Galois-Maximal and we determine the Brauer group of any real Enriques surface Y.  相似文献   
2.
A novel supramolecular strategy to prepare bidentate ligands via the assembly of functionalised monomeric ligands on a dimeric zinc(II) porphyrin template is presented; the assembled bidentate ligands show chelating behaviour and their rhodium complexes display enhanced selectivity in the hydroformylation compared to the non-template analogue.  相似文献   
3.
Polymeric building blocks containing terminal azide and alkyne functionalities are prepared via atom transfer radical polymerization (ATRP) and used to modularly synthesize block copolymers via 1,3-dipolar cycloaddition reactions, which are quantitative according to SEC measurements.  相似文献   
4.
The beta(1-->4) glycosidic linkage found in lactose is a prevalent structural motif in many carbohydrates and glycoconjugates. Using UV and IR ion-dip spectroscopies to probe benzyl lactoside isolated in the gas phase, we find that the disaccharide unit adopts only a single, rigid structure. Its fully resolved infrared ion-dip spectrum is in excellent agreement with that of the global minimum structure computed ab initio. This has glycosidic torsion angles of phi(H) (H1-C1-O-C4') approximately 180 degrees and psi(H) (C1-O-C4'-H4') approximately 0 degrees which correspond to a rotation of approximately 150 degrees about the glycosidic bond compared to the accepted solution-phase conformation. We discuss the biological implications of this discovery and the generality of the strategies employed in making it.  相似文献   
5.
Dendrimers are well-defined hyperbranched macromolecules with characteristic globular structures for the larger systems. These novel polymers have inspired many chemists to develop new materials and several applications have been explored, catalysis being one of them. The recent impressive strides in synthetic procedures increased the accessibility of functionalized dendrimers, resulting in a rapid development of dendrimer chemistry. The position of the catalytic site(s) as well as the spatial separation of the catalysts appears to be of crucial importance. Dendrimers that are functionalized with transition metals in the core potentially can mimic the properties of enzymes, their efficient natural counterparts, whereas the surface-functionalized systems have been proposed to fill the gap between homogeneous and heterogeneous catalysis. This might yield superior catalysts with novel properties, that is, special reactivity or stability. Both the core and periphery strategies lead to catalysts that are sufficiently larger than most substrates and products, thus separation by modern membrane separation techniques can be applied. These novel homogeneous catalysts can be used in continuous membrane reactors, which will have major advantages particularly for reactions that benefit from low substrate concentrations or suffer from side reactions of the product. Here we review the recent progress and breakthroughs made with these promising novel transition metal functionalized dendrimers that are used as catalysts, and we will discuss the architectural concepts that have been applied.  相似文献   
6.
Host-guest interactions between the periphery of adamantylurea-functionalized dendrimers (host) and ureido acetic acid derivatives (guest) were shown to be specific, strong and spatially well-defined. The binding becomes stronger when using phosphonic or sulfonic acid derivatives. In the present work we have quantified the binding constants for the host-guest interactions between two different host motifs and six different guest molecules. The host molecules, which resemble the periphery of a poly(propylene imine) dendrimer, have been fitted with an anthracene-based fluorescent probe. The two host motifs differ in terms of the length of the spacer between a tertiary amine and two ureido functionalities. The guest molecules all contain an acidic moiety (either a carboxylic acid, a phosphonic acid, or a sulfonic acid) and three of them also contain an ureido moiety capable of forming multiple hydrogen bonds to the hosts. The binding constants for all 12 host-guest complexes have been determined by using fluorescence titrations by monitoring the increase in fluorescence of the host upon protonation by the addition of the guest. The binding constants could be tuned by changing the design of the acidic part of the guest. The formation of hydrogen bonds gives, in all cases, higher association constants, demonstrating that the host is more than a proton sensor. The host with the longer spacer (propyl) shows higher association constants than the host with the shorter spacer (ethyl). The gain in association constants are higher when the urea function is added to the guests for the host with the longer spacer, indicating a better fit. Collision-induced dissociation mass spectrometry (CID-MS) is used to study the stability of the six motifs using the corresponding third generation dendrimer. A similar trend is found when the six different guests are compared.  相似文献   
7.
Understanding the degradation behavior of polymeric microspheres is crucial for the successful application of such devices in controlled drug delivery. The degradation mechanism of poly(lactic-co-glycolic acid) (PLGA) microspheres inside phagocytic cells is not known, but different models for degradation in aqueous solution have been proposed. We have used confocal Raman spectroscopy and imaging to study the intracellular degradation of PLGA microspheres inside individual macrophages. Our results show that ingested microspheres degrade in a heterogeneous manner, with a more rapid degradation in the center. Comparison of Raman spectra from degrading beads with those of uningested beads reveals that ester hydrolysis occurs throughout the phagocytosed microspheres, with a selective loss of glycolic acid units. Furthermore, we show that PLGA degradation is a cell-mediated process, possibly caused by the low pH of the phagosome and/or the presence of hydrolytic enzymes. In conclusion, we have demonstrated that the chemical composition of degrading polymers inside cells can be probed by Raman spectral imaging. This technique will expand the capabilities of investigating biomaterial degradation in vivo.  相似文献   
8.
Dendrimers, specifically suited to construct site-isolated groups due to their well-defined hyperbranched structure, have been used as a ligand design element for the construction of nickel catalysts for ethylene oligomerization. The dendritic P,O ligand indeed suppresses the formation of inactive bis(P,O)Ni complexes in toluene, as is evident from NMR studies, and, as a consequence, outperforms the parent ligand in catalysis in this solvent. The dendritic effect observed in methanol is more subtle because both the dendritic ligand 1 and the parent 2 form bis(P,O)nickel complexes in solution according to NMR spectroscopy. Unlike the parent complex 8, the dendritic bis(P,O)Ni complex 7 derived from dendrimer ligand 1 is able to dissociate to a mono-ligated species under catalytic conditions, that is, 40 bar ethylene and 80 degrees C, which can enter the catalytic cycle. Indeed, dendritic ligand 1 gives much more active nickel catalysts for the oligomerization in methanol than does 2.  相似文献   
9.
Catalytic CO oxidation on the RuO(2)(110) surface was studied at 300 K by scanning tunneling microscopy (STM), high-resolution electron-energy-loss spectroscopy (HREELS), and thermal desorption spectroscopy (TDS). Upon repeatedly exposing the surface to several 10 L of CO and O(2) at 300 K, STM shows that unreactive features accumulate with each CO and O(2) titration run. HREELS and TDS show formation of increasing amounts of H(2)O, retarded formation of O-cus atoms and incomplete removal of CO-bridge molecules during O(2) dosing, and a changing ratio of single- and double-bonded CO-bridge molecules. It is concluded that H(2)O (presumably from the residual gas) is accumulating at the Ru-cus sites thus blocking them, so that the dissociative adsorption of oxygen is prevented and the CO oxidation reaction is suppressed. Some 10% CO- bridge remains on the surface even during oxygen exposure. Consistent with this interpretation, deactivation of the surface is suppressed at 350 K, at the onset of H(2)O desorption.  相似文献   
10.
The time-resolved fluorescence properties of the bacteriophage T4 capsid protein gp23 are investigated. The structural characteristics of this protein are largely unknown and can be probed by recording time-resolved and decay-associated fluorescence spectra and intensity decay curves using a 200 ps-gated intensified CCD-camera. Spectral and decay data are recorded simultaneously, which makes data acquisition fast compared to time-correlated single-photon counting. A red-shift of the emission maximum within the first nanosecond of decay is observed, which can be explained by the different decay-associated spectra of fluorescence lifetimes of the protein in combination with dipolar relaxation. In addition, iodide quenching experiments are performed, to study the degree of exposure of the various tryptophan residues. A model for the origin of the observed lifetimes of 0.032 +/- 0.003, 0.39 +/- 0.06, 2.1 +/- 0.1 and 6.8 +/- 0.8 ns is presented: the 32 ps lifetime can be assigned to the emission of a buried tryptophan residue, the 0.4 and 2.1 ns lifetimes to two partly buried residues, and the 6.8 ns lifetime to a single tryptophan outside the bulk of the folded gp23.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号