首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
化学   7篇
数学   1篇
物理学   25篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  1998年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   4篇
  1987年   4篇
  1974年   1篇
  1967年   1篇
排序方式: 共有33条查询结果,搜索用时 31 毫秒
1.
2.
The non-linear relaxational properties of a water-based magnetic fluid are investigated by means of measuring the frequency dependent complex susceptibility, χ(ω) in the presence of an external potential. The results obtained are discussed in terms of the magnetic analogue of the Coffey and Paranjape model as modified by Déjardin. The loss processes in the magnetic fluid in the non-linear region are investigated in the context of the loss tangent, tan(δ), and the power dissipation per unit volume. These measurements are of importance because of the continuing interest in the clinical applications of magnetic fluids, where large alternating magnetic fields can be applied to magnetic fluids to induce loss processes and heating effects, often driving the magnetic fluid into the non-linear region of magnetisation. We evaluate the increment of the susceptibility, Δχ, due to the non-linear response, through measurement of χ(ω), and extend this formulism to the non-linear increment of the loss tangent, Δ tan(δ) and the increment of the heating rate, ΔUheat.  相似文献   
3.
The use of the Fokker–Planck equation in theoretical studies of relaxation processes in single-domain particle systems is a well-established technique. However this method has a particular disadvantage in that it can give analytical results solely in some limiting cases. An alternative method, which avoids this difficulty, is that of the use of the integral relaxation time, τint, which is presented in this work.  相似文献   
4.
Electrospray mass spectrometry/mass spectrometry was used to investigate the gas‐phase properties of protonated expanded porphyrins, in order to correlate those with their structure and conformation. We have selected five expanded meso‐pentafluorophenyl porphyrins, respectively, a pair of oxidized/reduced fused pentaphyrins (22 and 24 π electrons), a pair of oxidized/reduced regular hexaphyrins (26 and 28 π electrons) and a regular doubly N‐fused hexaphyrin (28 π electrons). The gas‐phase behavior of the protonated species of oxidized and reduced expanded porphyrins is different. The oxidized species (aromatic Hückel systems) fragment more extensively, mainly by the loss of two HF molecules. The reduced species (Möbius aromatic or Möbius‐like aromatic systems) fragment less than their oxidized counterparts because of their increased flexibility. The protonated regular doubly fused hexaphyrin (non‐aromatic Hückel system) shows the least fragmentation even at higher collision energies. In general, cyclization through losses of HF molecules decreases from the aromatic Hückel systems to Möbius aromatic or Möbius‐like aromatic systems to non‐aromatic Hückel systems and is related to an increase in conformational distortion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
5.
Microwave propagation parameters in magnetic fluids   总被引:1,自引:0,他引:1  
Complex dielectric permittivity and complex magnetic permeability measurements of two magnetic fluids (as microwave propagation media), in the approximate range 0.2-5GHz were performed. The two samples consisted of magnetite nanoparticles, dispersed in kerosene and in water, respectively. Based on the dielectric and magnetic measurements, the frequency (f ) dependence of the attenuation parameter, , the phase constant, , the propagation constant, , the intrinsic impedance, Zm, the refractive index, n , the reflection coefficient, R , the wavelength, and the skin depth, , of the investigated samples were determined.  相似文献   
6.
This paper reports on the frequency dependence of the magnetic and electric power dissipation in a magnetic fluid sample, in the microwave frequency range (0.5 to 8GHz), at various values of the static magnetic field (0 to 167.8kA/m). The computation of the power dissipation relies on the experimental values measured for the complex dielectric permittivity, ɛ = ɛ′ - iɛ″, and the complex magnetic permeability, μ = μ′ - iμ″, over the same frequency range. The results show that the magnetic power dissipation is much larger than the electric one for the investigated sample. At a specific frequency, f (Hz) , the power dissipation, p, depends on the external magnetic field, and exhibits a maximum. The result obtained suggests the possibility of controlling the energy absorption in the microwave range by means of the application of an external magnetic field.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号