首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2928篇
  免费   35篇
  国内免费   6篇
化学   1925篇
晶体学   13篇
力学   22篇
数学   475篇
物理学   534篇
  2016年   35篇
  2015年   29篇
  2014年   32篇
  2013年   77篇
  2012年   72篇
  2011年   95篇
  2010年   67篇
  2009年   52篇
  2008年   71篇
  2007年   79篇
  2006年   77篇
  2005年   78篇
  2004年   74篇
  2003年   72篇
  2002年   52篇
  2001年   33篇
  2000年   32篇
  1998年   22篇
  1996年   28篇
  1995年   45篇
  1994年   40篇
  1993年   46篇
  1992年   36篇
  1991年   33篇
  1989年   36篇
  1988年   34篇
  1987年   38篇
  1986年   28篇
  1985年   46篇
  1984年   56篇
  1983年   51篇
  1982年   44篇
  1981年   43篇
  1980年   41篇
  1979年   48篇
  1978年   56篇
  1977年   38篇
  1976年   57篇
  1975年   46篇
  1974年   34篇
  1973年   41篇
  1972年   30篇
  1971年   36篇
  1970年   21篇
  1966年   18篇
  1933年   19篇
  1932年   23篇
  1930年   18篇
  1929年   19篇
  1913年   22篇
排序方式: 共有2969条查询结果,搜索用时 15 毫秒
1.
In the quest for new antibiotics, two novel engineered cationic antimicrobial peptides (eCAPs) have been rationally designed. WLBU2 and D8 (all 8 valines are the d -enantiomer) efficiently kill both Gram-negative and -positive bacteria, but WLBU2 is toxic and D8 nontoxic to eukaryotic cells. We explore protein secondary structure, location of peptides in six lipid model membranes, changes in membrane structure and pore evidence. We suggest that protein secondary structure is not a critical determinant of bactericidal activity, but that membrane thinning and dual location of WLBU2 and D8 in the membrane headgroup and hydrocarbon region may be important. While neither peptide thins the Gram-negative lipopolysaccharide outer membrane model, both locate deep into its hydrocarbon region where they are primed for self-promoted uptake into the periplasm. The partially α-helical secondary structure of WLBU2 in a red blood cell (RBC) membrane model containing 50 % cholesterol, could play a role in destabilizing this RBC membrane model causing pore formation that is not observed with the D8 random coil, which correlates with RBC hemolysis caused by WLBU2 but not by D8.  相似文献   
2.
3.
Structurally defined graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices. Low band gap (<1 eV) GNRs are particularly important when considering the Schottky barrier in device performance. Here, we demonstrate the first solution synthesis of 8-AGNRs through a carefully designed arylated polynaphthalene precursor. The efficiency of the oxidative cyclodehydrogenation of the tailor-made polymer precursor into 8-AGNRs was validated by FT-IR, Raman, and UV/Vis-near-infrared (NIR) absorption spectroscopy, and further supported by the synthesis of naphtho[1,2,3,4-ghi]perylene derivatives ( 1 and 2 ) as subunits of 8-AGNR , with a width of 0.86 nm as suggested by the X-ray single crystal analysis. Low-temperature scanning tunneling microscopy (STM) and solid-state NMR analyses provided further structural support for 8-AGNR . The resulting 8-AGNR exhibited a remarkable NIR absorption extending up to ∼2400 nm, corresponding to an optical band gap as low as ∼0.52 eV. Moreover, optical-pump TeraHertz-probe spectroscopy revealed charge-carrier mobility in the dc limit of ∼270 cm2 V−1 s−1 for the 8-AGNR .  相似文献   
4.
Sodium-ion batteries (NIBs) utilize cheaper materials than lithium-ion batteries (LIBs) and can thus be used in larger scale applications. The preferred anode material is hard carbon, because sodium cannot be inserted into graphite. We apply experimental entropy profiling (EP), where the cell temperature is changed under open circuit conditions. EP has been used to characterize LIBs; here, we demonstrate the first application of EP to any NIB material. The voltage versus sodiation fraction curves (voltage profiles) of hard carbon lack clear features, consisting only of a slope and a plateau, making it difficult to clarify the structural features of hard carbon that could optimize cell performance. We find additional features through EP that are masked in the voltage profiles. We fit lattice gas models of hard carbon sodiation to experimental EP and system enthalpy, obtaining: 1. a theoretical maximum capacity, 2. interlayer versus pore filled sodium with state of charge.  相似文献   
5.
This paper describes an image-processing-based measurement system by which an automatic large deformation characterization and interactive force control can be realized. The system is provided by a servo-controlled CCD camera and a PC-based frame grabber. A tracking procedure based on the location of a target point is employed for guiding the camera movement. It is intended to monitor the local deformation in a relatively small moving area containing small globules. The globule positions are then used to determine the surface deformation characteristics. In this system, the momentary principal strains being computed online are immediately used to control the applied force. As an illustration, the present system is applied for observing a long-term homogeneous large deformation in SI-rubber specimens being subjected to a constant uniaxial true stress. Four solid, minuscule, relatively undeformable polystyrene globules are used as markers. A true stress control algorithm is developed based on the isotropy assumption in which the transverse area normal to the loading direction becomes determinable from the surface deformation data. It can be stated that the maximum speed of the true stress control is mainly related to the speed of image processing and analysis, which in turn is related to the chosen number of globules and the performance of the PC used. By using four globules, the true stress readjustment could be accomplished for roughly every 4 s. For a large-strain deformation of SI-rubber, it appears that the isotropy assumption is acceptable, since the resulting mean difference between out-of-plane contraction and in-plane contraction is restricted to about±8 percent.  相似文献   
6.
7.
We have studied sample preparation conditions to increase the reproducibility of positive UV-MALDI-TOF mass spectrometry of peptides in the amol range. By evaluating several α-cyano-4-hydroxy-cinnamic acid (CHCA) matrix batches and preparation protocols, it became apparent that two factors have a large influence on the reproducibility and the quality of the generated peptide mass spectra: (1) the selection of the CHCA matrix, which allows the most sensitive measurements and an easier finding of the “sweet spots,” and (2) the amount of the sample volume deposited onto the thin crystalline matrix layer. We have studied in detail the influence of a contaminant, coming from commercial CHCA matrix batches, on sensitivity of generated peptide mass spectra in the amol as well as fmol range of a tryptic peptide mixture. The structure of the contaminant, N,N-dimethylbutyl amine, was determined by applying MALDI-FT-ICR mass spectrometry experiments for elemental composition and MALDI high energy CID experiments utilizing a tandem mass spectrometer (TOF/RTOF). A recrystallization of heavily contaminated CHCA batches that reduces or eliminates the determined impurity is described. Furthermore, a fast and reliable method for the assessment of CHCA matrix batches prior to tryptic peptide MALDI mass spectrometric analyses is presented.
Figure
?  相似文献   
8.
In this paper, we introduce numerical methods that can simulate complex multiphase flows. The finite volume method, applying Cartesian cut-cell is used in the computational domain, containing fluid and solid, to conserve mass and momentum. With this method, flows in and around any geometry can be simulated without complex and time consuming meshing. For the fluid region, which involves liquid and gas, the ghost fluid method is employed to handle the stiffness of the interface discontinuity problem. The interaction between each phase is treated simply by wall function models or jump conditions of pressure, velocity and shear stress at the interface. The sharp interface method “coupled level set (LS) and volume of fluid (VOF)” is used to represent the interface between the two fluid phases. This approach will combine some advantages of both interface tracking/capturing methods, such as the excellent mass conservation from the VOF method and good accuracy of interface normal computation from the LS function. The first coupled LS and VOF will be generated to reconstruct the interface between solid and the other materials. The second will represent the interface between liquid and gas.  相似文献   
9.
10.
1 [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号