首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   957篇
  免费   14篇
  国内免费   8篇
化学   696篇
晶体学   12篇
力学   13篇
数学   136篇
物理学   122篇
  2020年   12篇
  2019年   11篇
  2018年   6篇
  2017年   6篇
  2016年   7篇
  2015年   13篇
  2014年   6篇
  2013年   34篇
  2012年   36篇
  2011年   58篇
  2010年   17篇
  2009年   18篇
  2008年   39篇
  2007年   49篇
  2006年   75篇
  2005年   52篇
  2004年   62篇
  2003年   42篇
  2002年   55篇
  2001年   11篇
  2000年   13篇
  1999年   10篇
  1998年   8篇
  1997年   14篇
  1996年   13篇
  1995年   10篇
  1994年   17篇
  1993年   9篇
  1992年   15篇
  1991年   7篇
  1990年   5篇
  1989年   8篇
  1988年   11篇
  1987年   8篇
  1986年   11篇
  1985年   9篇
  1984年   18篇
  1983年   9篇
  1982年   18篇
  1981年   18篇
  1980年   22篇
  1979年   15篇
  1978年   15篇
  1977年   12篇
  1976年   9篇
  1975年   15篇
  1974年   15篇
  1973年   5篇
  1972年   6篇
  1966年   5篇
排序方式: 共有979条查询结果,搜索用时 15 毫秒
1.
ABSTRACT

Numerical approximations of the solution of a boundary value problem when an exact solution is not available can be constructed by means of a variety of methods. In this paper, we present a technique that is based on the integral representation of the solution of an elliptic problem and the properties of the associated layer potentials. The procedure is illustrated in application to the mathematical model of bending of plates with transverse shear deformation in a finite domain, in the presence of Dirichlet, Neumann, and Robin conditions prescribed on the boundary.  相似文献   
2.
Trace quantities of hydrogen‐bonding impurities in otherwise highly purified and dried glassy hydrocarbon matrices at 77 K can modify the relative triplet state energy levels, and hence the photophysical properties of two aromatic ketones, xanthone and chromone, to the extent that the intrinsic spectroscopic properties are obscured. The intrinsic spectroscopic properties of each are revealed in multicrystalline n‐alkane Shpol'skii matrices, and also can be observed in rigorously purified and dried hydrocarbon glasses at 77 K. The extreme sensitivity to stoichiometric, and even substoichiometric quantities of hydrogen‐bonding impurities arises from the near‐degeneracy of the two lowest‐lying triplet states, and the sensitive nature of the n→π* blueshift phenomena to specific hydrogen‐bonding interactions.  相似文献   
3.

The separation of americium(III) from europium(III) was achieved utilizing a bis-2,6-(5,6,7,8-tetrahydro-5,9,9-trimethyl-5,8-methano-1,2,4-benzotriazin-3-yl) pyridine (CA-BTP) chromatographic resin. The extraction chromatographic materials were prepared using various concentrations of CA-BTP. This new, hydrolytically stable extractant was impregnated on an inert polymeric support at 40% loading. The uptake of Am(III) and Eu(III) by this material from 0.1 to 4.0 M aqueous HNO3 solutions was measured. The resulting dry weight distribution ratios, D w , indicated a strong preference for Am(III) with little affinity for Eu(III). These results are similar to recently reported solvent extraction studies indicating a maximum uptake of Am(III) in the 0.5–1.0 M HNO3 range. The resin preparation, performance, and characterization of the Am/Eu separation are reported herein.

  相似文献   
4.
The paper presents an analytical construction of effective two-phase parameters for one-dimensional heterogeneous porous media, and studies their properties. We base the computation of effective parameters on analytical solutions for steady-state saturation distributions. Special care has to be taken with respect to saturation and pressure discontinuities at the interface between different rocks. The ensuing effective relative permeabilities and effective capillary pressure will be functions of rate, flow direction, fluid viscosities, and spatial scale of the heterogeneities.The applicability of the effective parameters in dynamic displacement situations is studied by comparing fine-gridded simulations in heterogeneous media with simulations in their homogeneous (effective) counterparts. Performance is quite satisfactory, even with strong fronts present. Also, we report computations studying the applicability of capillary limit parameters outside the strict limit.  相似文献   
5.
Inositol is a six‐carbon sugar alcohol and is one of nine biologically significant isomers of hexahydroxycyclohexane. Myo‐inositol is the primary biologically active form and is present in higher concentrations in the fetus and newborn than in adults. It is currently being examined for the prevention of retinopathy of prematurity in newborn preterm infants. A robust method for quantifying myo‐inositol (MI), D ‐chiro‐inositol (DCI) and 1,5‐anhydro‐ D ‐sorbitol (ADS) in very small‐volume (25 μL) urine, blood serum and/or plasma samples was developed. Using a multiple‐column, multiple mobile phase liquid chromatographic system with electrochemical detection, the method was validated with respect to (a) selectivity, (b) accuracy/recovery, (c) precision/reproducibility, (d) sensitivity, (e) stability and (f) ruggedness. The standard curve was linear and ranged from 0.5 to 30 mg/L for each of the three analytes. Above‐mentioned performance measures were within acceptable limits described in the Food and Drug Administration's Guidance for Industry: Bioanalytical Method Validation. The method was validated using blood serum and plasma collected using four common anticoagulants, and also by quantifying the accuracy and sensitivity of MI measured in simulated urine samples recovered from preterm infant diaper systems. The method performs satisfactorily measuring the three most common inositol isomers on 25 μL clinical samples of serum, plasma, milk, and/or urine. Similar performance is seen testing larger volume samples of infant formulas and infant formula ingredients. MI, ADS and DCI may be accurately tested in urine samples collected from five different preterm infant diapers if the urine volume is greater than 2–5 mL. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
6.
7.
8.
Due to the inherently flexible nature of a protein–protein interaction surface, it is difficult both to inhibit the association with a small molecule, and to predict how it might bind to the surface. In this study, we have examined small molecules that mediate the interaction between a WWI motif on the C-helix of HIV-1 glycoprotein-41 (gp41) and a deep hydrophobic pocket contained in the interior N-helical trimer. Association between these two components of gp41 leads to virus–cell and cell–cell fusion, which could be abrogated in the presence of an inhibitor that binds tightly in the pocket. We have studied a comprehensive combinatorial library of α-helical peptidomimetics, and found that compounds with strongly hydrophobic side chains had the highest affinity. Computational docking studies produced multiple possible binding modes due to the flexibility of both the binding site and the peptidomimetic compounds. We applied a transferred paramagnetic relaxation enhancement experiment to two selected members of the library, and showed that addition of a few experimental constraints enabled definitive identification of unique binding poses. Computational docking results were extremely sensitive to side chain conformations, and slight variations could preclude observation of the experimentally validated poses. Different receptor structures were required for docking simulations to sample the correct pose for the two compounds. The study demonstrated the sensitivity of predicted poses to receptor structure and indicated the importance of experimental verification when docking to a malleable protein–protein interaction surface.  相似文献   
9.
10.
The pendant drop technique was used to characterize the adsorption behavior of n-dodecane-1-thiol and n-hexane-1-thiol-capped gold nanoparticles at the hexane–water interface. The adsorption process was studied by analyzing the dynamic interfacial tension versus nanoparticle concentration, both at early times and at later stages (i.e., immediately after the interface between the fluids is made and once equilibrium has been established). A series of gold colloids were made using nanoparticles ranging in size from 1.60 to 2.85 nm dissolved in hexane for the interfacial tension analysis. Following free diffusion of nanoparticles from the bulk hexane phase, adsorption leads to ordering and rearrangement of the nanoparticles at the interface and formation of a dense monolayer. With increasing interfacial coverage, the diffusion-controlled adsorption for the nanoparticles at the interface was found to change to an interaction-controlled assembly and the presence of an adsorption barrier was experimentally verified. At the same bulk concentration, different sizes of n-dodecane-1-thiol nanoparticles showed different absorption behavior at the interface, in agreement with the findings of Kutuzov et al. (Phys Chem Chem Phys 9:6351–6358, 2007). The experiments additionally demonstrated the important role played by the capping agent. At the same concentration, gold nanoparticles stabilized by n-hexane-1-thiol exhibited greater surface activity than gold nanoparticles of the same size stabilized by n-dodecane-1-thiol. These findings contribute to the design of useful supra-colloidal structures by the self-assembly of alkane-thiol-capped gold nanoparticles at liquid–liquid interfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号