首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   0篇
化学   10篇
数学   4篇
物理学   36篇
  2014年   1篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2007年   2篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  2000年   4篇
  1999年   2篇
  1996年   4篇
  1995年   7篇
  1994年   6篇
  1993年   5篇
  1992年   6篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有50条查询结果,搜索用时 31 毫秒
1.
2.
3.
Poly(styrene-co-acrylamide) (PS-AAM) latex was prepared, fractionated by sedimentation under gravity, and characterized by PCS, infrared spectra, secondary and backscattered electron imaging in the scanning electron microscope, and electron spectroscopy imaging in an analytical transmission electron microscope. Three latex fractions were obtained. The lower fraction was opalescent and its particles were the more uniform, concerning size, chemical composition, and topochemical features. This lower fraction was still further fractionated by zonal centrifugation in a density gradient, yielding two fractions with similar macrocrystal-forming abilities but different sizes and chemical compositions. These results confirm those previously obtained for the PS-HEMA latex. Copyright 2000 Academic Press.  相似文献   
4.
5.
6.
The complementary threshold ionization techniques of MATI and ZEKE spectroscopy have been used to reveal well-resolved, long-lived (>10 micros) hydrogenic Rydberg series (50< or =n< or =98) in a van der Waals complex formed between a polyatomic molecule and a diatomic molecule for the first time. The series are observed within 50 cm(-1) of the adiabatic ionization threshold as well as two core-excited thresholds corresponding to excitation of up to two quanta in the van der Waals vibrational mode.  相似文献   
7.

Background

Antisense oligonucleotide (AON)-mediated exon skipping is a powerful tool to manipulate gene expression. In the present study we investigated the potential of exon skipping by local injection in the central nucleus of the amygdala (CeA) of the mouse brain. As proof of principle we targeted the splicing of steroid receptor coactivator-1 (SRC-1), a protein involved in nuclear receptor function. This nuclear receptor coregulator exists in two splice variants (SRC-1a and SRC-1e) which display differential distribution and opposing activities in the brain, and whose mRNAs differ in a single SRC-1e specific exon.

Methods

For proof of principle of feasibility, we used immunofluorescent stainings to study uptake by different cell types, translocation to the nucleus and potential immunostimulatory effects at different time points after a local injection in the CeA of the mouse brain of a control AON targeting human dystrophin with no targets in the murine brain. To evaluate efficacy we designed an AON targeting the SRC-1e-specific exon and with qPCR analysis we measured the expression ratio of the two splice variants.

Results

We found that AONs were taken up by corticotropin releasing hormone expressing neurons and other cells in the CeA, and translocated into the cell nucleus. Immune responses after AON injection were comparable to those after sterile saline injection. A successful shift of the naturally occurring SRC-1a:SRC-1e expression ratio in favor of SRC-1a was observed, without changes in total SRC-1 expression.

Conclusions

We provide a proof of concept for local neuropharmacological use of exon skipping by manipulating the expression ratio of the two splice variants of SRC-1, which may be used to study nuclear receptor function in specific brain circuits. We established that exon skipping after local injection in the brain is a versatile and useful tool for the manipulation of splice variants for numerous genes that are relevant for brain function.  相似文献   
8.
The structural properties of phenylacetylene have been investigated in the S(0)((1)A(1)) neutral ground and S(1)((1)B(2)) and S(2)((1)A(1)) singlet excited states and the D(0)((2)B(1)) cationic state using both rovibronic and multidimensional Franck-Condon simulations from data determined via correlated ab initio methods. Results are compared to experimental and ab initio data reported in the literature. (10,10)-CASSCF and a hybrid CASSCF/SACCI frequency analysis using the cc-pVDZ Dunning basis set have been employed to produce vibronic simulations of REMPI/FES, dispersed fluorescence, TPES and MATI spectra. Calculated rotational constants are used where appropriate to compare to rotationally resolved experimental studies. Whilst the simulations are of generally good quality, it is apparent that the distortion of the ring along the long axis upon electronic excitation is underestimated, resulting in smaller predicted changes in ipso and para CCC bond angles and weaker activities in the 6a and 9a modes compared with experiment. Simulations of one-photon MATI spectra on the other hand, which do not rely on excited state methodologies, compare very well with experiment, suggesting that the neutral and cationic ground state geometries are quite accurate, as are the predicted changes in geometry accompanying ionisation. Simulated rotational and vibrational profiles, as well as other calculated physical data, show good agreement with the numerous experimental and computational studies of phenylacetylene in the literature.  相似文献   
9.
The fluorobenzene-ammonia van der Waals complex has been studied using a combination of two-color resonance enhanced multiphoton ionization (REMPI) spectroscopy, counterpoise corrected RICC2 ab initio molecular orbital calculations, and multidimensional Franck-Condon analysis. The experimental REMPI spectrum is characterized by a dominant, blueshifted band origin, and weak activity in intermolecular vibrational modes. RICC2 geometry optimizations and numerical vibrational frequency calculations of the neutral ground and first excited states have been performed on a number of different structural isomers of the complex using basis sets ranging from augmented double-zeta to quadruple-zeta level. Ground state basis set superposition error corrected zero-point binding energies show the in-plane sigma complex, forming a pseudo-six-membered ring connecting the fluorine atom and ortho-hydrogen, to be consistently the most stable of all six conformations considered, at all levels of theory. Comparison of computed zero-point excitation energies for the most stable pi and sigma conformers with fluorobenzene show that the sigma complex is the only conformer predicted to exhibit a spectral blueshift upon electronic excitation. The computed neutral ground and first excited state geometries and frequencies were used to perform multidimensional Franck-Condon simulations of the S(1)-S(0) vibronic spectrum for each of the most stable conformers. These simulations yielded null spectra for transitions involving the most stable of the pi complexes, pi(bridge); a spectrum rich in strong intermolecular vibrational structure for the second of the pi complexes, in complete contrast to the experimental spectrum; and for the sigma complex, a spectrum exhibiting weak intermolecular activity in line with that observed experimentally. This last simulation allowed an almost complete vibrational assignment of the intermolecular structure in the REMPI spectrum. The agreement between computational results and experiment overwhelmingly favors assignment of the spectrum to the in-plane sigma complex.  相似文献   
10.
Large enhancements have been observed in the sub-barrier fusion cross sections for Ti+Ni systems in our previous studies. Coupled channel calculations incorporating couplings to 2+ and 3 states failed to explain these enhancements completely. A possibilty of transfer channels contributing to the residual enhancements had been suggested. In order to investigate the role of relevant transfer channels, measurements of one- and two-nucleon transfer were carried out for 46,48Ti+61Ni systems. The present paper gives the results of these studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号