首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   2篇
化学   27篇
力学   4篇
数学   4篇
物理学   14篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2007年   1篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1995年   1篇
  1982年   1篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有49条查询结果,搜索用时 78 毫秒
1.
An additive thermodynamic contribution of pendant arms to the complexation of calixarene derivatives with mercury(II) in acetonitrile is for the first time demonstrated.  相似文献   
2.
The solvent control on the ability of a partially substituted lower rim calix(4)arene derivative 5,11,17,23,tetra-tert-butyl[25,27-bis(hydroxy)-26,28-bis(ethylthioethoxy)]-calix(4)arene, 1 to host soft metal cations (Hg(II) and Ag(I)) is demonstrated through 1H NMR, electrochemical (conductance measurements), and thermodynamic characterization of the complexation process in a wide variety of solvents. Solvent-ligand interactions were assessed from 1H NMR measurements involving 1 and various solvents in CDCl3. Thus, the formation of a 1:1 1-CH3CN adduct is reported. As far as metal cations are concerned, depending on the medium their complexation with 1 was only observed for Hg(II) and Ag(I). Thus, in acetonitrile, 1 is more selective for Hg(II) relative to Ag(I) by a factor of 2.2 x 10(3). In methanol the selectivity is reversed to an extent that the affinity of 1 for Ag(I) is 1.4 x 10(3) higher than that for Hg(II). However, 1 is unable to recognize selectively these cations in N,N-dimethylformamide while in propylene carbonate the ability of 1 to interact with these cations is lost. An outstanding feature of thermodynamics emerges when an assessment is made of the ligand effect on the complexation of these cations and analogues calix(4)arene derivatives. Thus, in acetonitrile the thermodynamics of cation complexation by the hydrophilic cavity of a calix(4)arene containing mixed pendant groups is built up from thermodynamic data for the same process involving derivatives with common functionalities at the narrow rim. This is a unique example of the additive contribution of pendant arms in the field of thermodynamics of calixarene chemistry.  相似文献   
3.
Experiments with fast folding proteins are beginning to address the relationship between collapse and folding. We investigate how different scenarios for folding can arise depending on whether the folding and collapse transitions are concurrent or whether a nonspecific collapse precedes folding. Many earlier studies have focused on the limit in which collapse is fast compared to the folding time; in this work we focus on the opposite limit where, at the folding temperature, collapse and folding occur simultaneously. Real proteins exist in both of these limits. The folding mechanism varies substantially in these two regimes. In the regime of concurrent folding and collapse, nonspecific collapse now occurs at a temperature below the folding temperature (but slightly above the glass transition temperature).  相似文献   
4.
5.
Polymers confined to small dimensions and that undergo high strains can show remarkable nonlinear mechanics, which must be understood to accurately predict the functioning of nanoscale polymer devices. In this paper we describe the determination of the mechanical properties of ultrathin polydimethylsiloxane (PDMS) films undergoing large strains, using atomic force microscope (AFM) indentation with a spherical tip. The PDMS was molded into extremely thin films of variable thickness and adhered to a hard substrate. We found that for films below 1 μm in thickness the Young's modulus increased with decreasing sample thickness with a power law exponent of 1.35. Furthermore, as the soft PDMS film was indented, significant strain hardening was observed as the indentation depth approached 45% of the sample thickness. To properly quantify the nonlinear mechanical measurements, we utilized a pointwise Hertzian model which assumes only piecewise linearity on the part of the probed material. This analysis revealed three regions within the material. A linear region with a constant Young's modulus was seen for compression up to 45% strain. At strains higher than 45%, a marked increase in Young's modulus was measured. The onset of strain induced stiffening is well modeled by finite element modeling and occurs as stress contours expanding from the probe and the substrate overlap. A third region of mechanical variation occurred at small indentations of less than 10 nm. The pointwise Young's modulus at small indentations was several orders of magnitude higher than that in the linear elasticity region; we studied and ruled out causes responsible for this phenomenon. In total, these effects can cause thin elastomer films to become extremely stiff such that the measured Young's modulus is over a 100-fold higher than the bulk PDMS. Therefore, the mechanics of a polymer can be changed by adjusting the geometry of a material, in addition to changing the material itself. In addition to understanding the mechanics of thin polymer films, this work provides an excellent test of experimental techniques to measure the mechanics of other nonlinear and heterogeneous materials such as biological cells.  相似文献   
6.
The role of π‐conjugated molecular bridges in through‐space and through‐bond electron transfer is studied by comparing two porphyrin–fullerene donor–acceptor (D–A) dyads. One dyad, ZnP–Ph–C60 (ZnP=zinc porphyrin), incorporates a phenyl bridge between D and A and behaves very similarly to analogous dyads studied previously. The second dyad, ZnP–EDOTV–C60, introduces an additional 3,4‐ethylenedioxythienylvinylene (EDOTV) unit into the conjugated bridge, which increases the distance between D and A, but, at the same time, provides increased electronic communication between them. Two essential outcomes that result from the introduction of the EDOTV unit in the bridge are as follows: 1) faster charge recombination, which indicates enhanced electronic coupling between the charge‐separated and ground electronic states; and 2) the disappearance of the intramolecular exciplex, which mediates photoinduced charge separation in the ZnP–Ph–C60 dyad. The latter can be interpreted as a gradual decrease in electronic coupling between locally excited singlet states of D and A when introducing the EDOTV unit into the D–A bridge.  相似文献   
7.
Despite the beneficial health properties shown by Lebanese saffron, its qualitative and quantitative composition has never been investigated before. In the present study, NMR spectroscopy, together with antioxidant activity assays, were applied to evaluate the chemical composition of saffron samples of different geographical origins (Lebanon, Italy, Iran, and India) and to categorize the Lebanese saffron for the first time. The distinction between Lebanese saffron and that produced in other countries was attributed to its higher linolenic and linoleic fatty acids, glucose and picrocrocin contents. Moreover, spices produced in three different regions of the Lebanese territory have been clearly differentiated. Saffron cultivated in the Qaa region displayed a high glucose, fatty acids and polyphenols content, whereas Hermel saffron exhibited the largest rate of picrocrocin and glycosylated carotenoids. Finally, samples from Baalbeck showed lower rates for the majority of metabolites. Moreover, Lebanese saffron showed a high antioxidant activity in ABTS and DPPH assays. A low dose of saffron extract (10 µg/mL) inhibited the growth of human lung adenocarcinoma cells, probably due to the high polyphenolic content. This study highlights the quality and peculiarity of Lebanese saffron cultivated in Northern Beqaa district and allows for a good discrimination between spices produced in relatively close territory.  相似文献   
8.
Hydrogen adsorption measurements on Al-, Cr-, and Zn-based metal-organic frameworks (MOFs) and single-walled carbon nanotubes (SWNTs) are presented. The measurements were performed at temperatures ranging from 77 to 300 K and pressures up to 50 atm using a volumetric approach. The maximum excess adsorption at 77 K ranges from 2.3 to 3.9 wt % for the MOFs and from 1.5 to 2.5 wt % for the SWNTs. These values are reached at pressures below 40 atm. At room temperature and 40 atm, modest amounts of hydrogen are adsorbed (<0.4 wt %). A Dubinin-Astakhov (DA) approach is used to investigate the measured adsorption isotherms and to retrieve energetic and structural parameters. The adsorption enthalpy averaged over filling is about 2.9 kJ/mol for the MOF-5 and about 3.6-4.2 kJ/mol for SWNTs.  相似文献   
9.
An electrochemical method to prepare solutions of samarium diiodide in THF is reported. The simple electrolysis of a samarium rod provides a rapid and straightforward in situ synthesis of SmI(2) . The electrogenerated complex catalyzes various C?C bond formations. The reagent is produced continuously and leads to efficient organic electrosynthesis with significantly smaller amounts of solvent than usually required.  相似文献   
10.
The stability of thick shell encapsulated bubbles is studied analytically. 3-D small perturbations are introduced to the spherical oscillations of a contrast agent bubble in response to a sinusoidal acoustic field with different amplitudes of excitation. The equations of the perturbation amplitudes are derived using asymptotic expansions and linear stability analysis is then applied to the resulting differential equations. The stability of the encapsulated microbubbles to nonspherical small perturbations is examined by solving an eigenvalue problem. The approach then identifies the fastest growing perturbations which could lead to the breakup of the encapsulated microbubble or contrast agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号