首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   792篇
  免费   36篇
  国内免费   20篇
化学   568篇
晶体学   6篇
力学   18篇
数学   83篇
物理学   173篇
  2020年   8篇
  2019年   15篇
  2016年   13篇
  2015年   16篇
  2014年   10篇
  2013年   22篇
  2012年   27篇
  2011年   45篇
  2010年   17篇
  2009年   21篇
  2008年   39篇
  2007年   30篇
  2006年   29篇
  2005年   24篇
  2004年   23篇
  2003年   27篇
  2002年   39篇
  2001年   30篇
  2000年   32篇
  1999年   11篇
  1997年   13篇
  1996年   5篇
  1995年   10篇
  1994年   11篇
  1993年   8篇
  1992年   10篇
  1991年   18篇
  1990年   12篇
  1989年   18篇
  1988年   17篇
  1987年   22篇
  1986年   15篇
  1985年   10篇
  1984年   15篇
  1983年   8篇
  1982年   8篇
  1981年   8篇
  1980年   9篇
  1979年   18篇
  1978年   15篇
  1977年   10篇
  1976年   11篇
  1975年   8篇
  1974年   14篇
  1973年   8篇
  1972年   6篇
  1971年   9篇
  1970年   7篇
  1969年   10篇
  1967年   8篇
排序方式: 共有848条查询结果,搜索用时 31 毫秒
1.
Chiral cyclopentadienyl rhodium complexes promote highly enantioselective enol‐directed C(sp2)‐H functionalization and oxidative annulation with alkynes to give spiroindenes containing all‐carbon quaternary stereocenters. High selectivity between two possible directing groups, as well as control of the direction of rotation in the isomerization of an O‐bound rhodium enolate into the C‐bound isomer, appear to be critical for high enantiomeric excesses.  相似文献   
2.
The precise guidance to different ions across the biological channels is essential for many biological processes. An artificial nanopore system will facilitate the study of the ion‐transport mechanism through nanosized channels and offer new views for designing nanodevices. Herein we reveal that a 2.5 nm‐sized, fullerene‐shaped molecular cluster Li48+mK12(OH)m[UO2(O2)(OH)]60?(H2O)n (m≈20 and n≈310) ( U60 ) shows selective permeability to different alkali ions. The subnanometer pores on the water–ligand‐rich surface of U60 are able to block Rb+ and Cs+ ions from passing through, while allowing Na+ and K+ ions, which possess larger hydrated sizes, to enter the interior space of U60 . An interestingly high entropy gain during the binding process between U60 and alkali ions suggests that the hydration shells of Na+/K+ and U60 are damaged during the interaction. The ion selectivity of U60 is greatly influenced by both the morphologies of the surface nanopores and the dynamics of the hydration shells.  相似文献   
3.
We consider two impact mappings, the Brach impact mapping and an energetic impact mapping, for rigid-body mechanisms with impacts and friction. The two impact mappings represent the opposite end of the spectrum from basic to advanced impact mappings. Both impact mappings are briefly derived and described. For the Brach impact mapping we will introduce the concept of impulse ratio and discuss how the kinetic energy changes during an impact as the impulse ratio is varied. This analysis is used to further extend the Brach impact mapping to cover situations that were previously omitted. Finally, we make comparisons between the two impact mappings and show how the Painlevé paradox appears in the two impact mappings. The conclusion of the comparisons is that while the basic impact mapping seems easy to implement in a computer simulator it may in the end be more complex and also introduce unnecessary complications that are completely artificial.  相似文献   
4.
An interesting phenomenon is reported when uranyl peroxide nanoclusters U60 (Li48+mK12(OH)m[UO2(O2)(OH)]60 (H2O)n, m≈20 and n≈310) interact with a small number of cationic surfactant molecules. Cationic surfactant molecules do not distribute evenly around the U60 clusters during the interaction as expected. Instead, a small fraction of U60 clusters attract almost all the surfactant molecules, leading to the self-assembly into supramolecular structures by using surfactant–U60 complexes as building locks, and later further aggregate and precipitate based on hydrophobic interaction, whereas the rest of the clusters remained unbounded soluble macroions in bulk dispersion. This phenomenon nicely demonstrates a unique feature of macroion solutions. Considering that Debye–Hückel approximation is no longer valid in such solutions, the competition between the local electrostatic interaction and hydrophobic interaction becomes important to regulate the solution behaviors of macroions.  相似文献   
5.
6.
The hierarchical assembly of well‐organized submoieties could lead to more complicated superstructures with intriguing properties. We describe herein an unprecedented polyrotaxane polythreading framework containing a two‐fold nested super‐polyrotaxane substructure, which was synthesized through a uranyl‐directed hierarchical polythreading assembly of one‐dimensional polyrotaxane chains and two‐dimensional polyrotaxane networks. This special assembly mode actually affords a new way of supramolecular chemistry instead of covalently linked bulky stoppers to construct stable interlocked rotaxane moieties. An investigation of the synthesis condition shows that sulfate can assume a vital role in mediating the formation of different uranyl species, especially the unique trinuclear uranyl moiety [(UO2)3O(OH)2]2+, involving a notable bent [O=U=O] bond with a bond angle of 172.0(9)°. Detailed analysis of the coordination features, the thermal stability as well as a fluorescence, and electrochemical characterization demonstrate that the uniqueness of this super‐polyrotaxane structure is mainly closely related to the trinuclear uranyl moiety, which is confirmed by quantum chemical calculations.  相似文献   
7.
8.
A wide range of uranyl–peroxide nanocapsules have been synthesized using very simple reactants in basic media; however, little is known about the process to form these species. We have performed a density functional theory study of the speciation of the uranyl ions under different experimental conditions and explored the formation of dimeric species via a ligand exchange mechanism. We shed some light onto the importance of the excess of peroxide and alkali counterions as a thermodynamic driving force towards the formation of larger uranyl–peroxide species.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号