首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An actinyl peroxide cage cluster, Li48+mK12(OH)m[UO2(O2)(OH)]60 (H2O)n (m≈20 and n≈310; U60), discriminates precisely between Na+ and K+ ions when heated to certain temperatures, a most essential feature for K+ selective filters. The U60 clusters demonstrate several other features in common with K+ ion channels, including passive transport of K+ ions, a high flux rate, and the dehydration of U60 and K+ ions. These qualities make U60 (a pure inorganic cluster) a promising ion channel mimic in an aqueous environment. Laser light scattering (LLS) and isothermal titration calorimetry (ITC) studies revealed that the tailorable ion selectivity of U60 clusters is a result of the thermal responsiveness of the U60 hydration shells.  相似文献   

2.
The precise guidance to different ions across the biological channels is essential for many biological processes. An artificial nanopore system will facilitate the study of the ion‐transport mechanism through nanosized channels and offer new views for designing nanodevices. Herein we reveal that a 2.5 nm‐sized, fullerene‐shaped molecular cluster Li48+mK12(OH)m[UO2(O2)(OH)]60?(H2O)n (m≈20 and n≈310) ( U60 ) shows selective permeability to different alkali ions. The subnanometer pores on the water–ligand‐rich surface of U60 are able to block Rb+ and Cs+ ions from passing through, while allowing Na+ and K+ ions, which possess larger hydrated sizes, to enter the interior space of U60 . An interestingly high entropy gain during the binding process between U60 and alkali ions suggests that the hydration shells of Na+/K+ and U60 are damaged during the interaction. The ion selectivity of U60 is greatly influenced by both the morphologies of the surface nanopores and the dynamics of the hydration shells.  相似文献   

3.
The effect of solvation on the conformation of acetylene has been studied by adding one water molecule at a time. Quantum chemical calculations of the H+(C2H2)(H2O)n (n=1-5) clusters indicate that the H2O molecules prefer to form the OH…π interaction rather than the CH…O interaction. This solvation motif is different from that of neutral (C2H2)(H2O)n (n=1-4) clusters, in which the H2O molecules prefer to form the CH…O and OH…C H-bonds. For the H+(C2H2)(H2O)n cationic clusters, the first solvation shell consists of one ring structure with two OH…π H-bonds and three water molecules, which is completed at n=4. Simulated infrared spectra reveal that vibrational frequencies of OH…π H-bonded O-H stretching afford a sensitive probe for exploring the solvation of acetylene by protonated water molecules. Infrared spectra of the H+(C2H2)(H2O)n(n=1-5) clusters could be readily measured by the infrared photodissociation technique and thus provide useful information for the understanding of solvation processes.  相似文献   

4.
Reactions that proceed within mixed ethylene–methanol cluster ions were studied using an electron impact time-of-flight mass spectrometer. The ion abundance ratio, [(C2H4)n(CH3OH)mH+]/[(C2H4)n(CH3OH)m+], shows a propensity to increase as the ethylene/methanol mixing ratio increases, indicating that the proton is preferentially bound to a methanol molecule in the heterocluster ions. The results from isotope-labelling experiments indicate that the effective formation of a protonated heterocluster is responsible for ethylene molecules in the clusters. The observed (C2H4)n(CH3OH)m+ and (C2H4)n(CH3OH)m–1CH3O+ ions are interpreted as a consequence of the ion–neutral complex and intracluster ion–molecule reaction, respectively. Experimental evidence for the stable configurations of heterocluster species is found from the distinct abundance distributions of these ions and also from the observation of fragment peaks in the mass spectra. Investigations on the relative cluster ion distribution under various conditions suggest that (C2H4)n(CH3OH)mH+ ions with n + m ≤ 3 have particularly stable structures. The result is understood on the basis of ion–molecule condensation reactions, leading to the formation of fragment ions, $ {\rm CH}_2=\!=\mathop {\rm O}\limits^ + {\rm CH}_3 $ and (CH3OH)H3O+, and the effective stabilization by a polar molecule. The reaction energies of proposed mechanisms are presented for (C2H4)n(CH3OH)mH+(n + m ≤ 3) using semi-empirical molecular orbital calculations.  相似文献   

5.
As a continuation of our previous investigation, interactions between cyclodextrin (β-CD), γ-cyclodextrin (γ-CD) and alkyl trimethylammonium bromides in aqueous solutions have been studied with titration calorimetry and 1H NMR at 298.15 K. The results are discussed in terms of the amphiphilic interaction of CD with surfactants and the iceberg structure formed by water molecules existing around the hydrophobic tail of surfactant molecules. The stoichiometry of the β-CD–surfactant system is 1:1 whereas that of the γ-CD–surfactant system is 1:2. The corresponding formation enthalpy (negative) of the complexes of the two systems decreases with an increase in the number of carbon atoms (n) in hydrophobic chain of surfactant molecule, C n H2n+1, whereas the entropy increases with the enlargement of n.  相似文献   

6.
The influence of UV-irradiation on the interaction of hemoglobin (Hb) with Triton X-100 is investigated by UV–Vis absorption spectroscopy, fluorescence spectroscopy and freeze-fractured transmission electron microscopy. It is found that in Triton X-100/H2O systems Hb can convert to hemichrome but heme is not present, whereas in Triton X-100/n-C5H11OH/H2O microemulsion Hb can convert to hemichrome and then induce the heme monomer to leave the hydrophobic cavity of Hb. UV-irradiation can also convert Hb to hemichrome, and subsequently make heme to be photodegraded, in which the conversion rate depends on the structure of the surfactant aggregates. Furthermore, in order to understand the mechanism of photostabilization of Hb in Triton X-100 systems, the photostabilization of heme in the Triton X-100 aqueous solutions and Triton X-100/n-C5H11OH/H2O microemulsions has been studied.  相似文献   

7.
Thiolate‐protected gold nanoclusters, Aum(SR)n, have potential applications in many fields due to their high stability and remarkable electronic properties. However, the controlling factors in determining the stability and HOMO–LUMO gap of Aum(SR)n remain controversial, despite decades of work on the topic. Through DFT calculations, including nonlocal many‐body dispersion (MBD) interactions, the geometric and electronic properties of Aum(SR)n clusters are investigated. Calculations demonstrate that the MBD interactions are essential for correctly describing the geometry and energy of the clusters. Greater anisotropic polarization and more atoms distributed in the shell of the clusters lead to more pronounced MBD interactions and higher stability of the clusters. Furthermore, the HOMO–LUMO gap of the clusters strongly depends on the gold core. These results provide critical clues for understanding and designing Aum(SR)n clusters.  相似文献   

8.
The influence of carboxylic acids on water nucleation in the gas phase has been explored in the supersonic expansion of water vapour mixed with acetic acid (AcA) at various concentrations. The sodium‐doping method has been used to detect clusters produced in supersonic expansions by using UV photoionisation. The mass spectra obtained at lower acid concentrations show well‐detected Na+?AcA(H2O)n and Na+?AcA2(H2O)n clusters up to 200 Da and, in the best cooling expansions, emerging Na+?AcAm(H2O)n signals at higher masses and unresolved signals that extend beyond m/e values >1000 Da. These signals, which increase with increasing acid content in water vapour, are an indication that the cluster growth taking place arises from mixed water–acid clusters. Theoretical calculations show that small acid–water clusters are stable and their formation is even thermodynamically favoured with respect to pure water clusters, especially at lower temperatures. These findings suggest that acetic acid may play a significant role as a pre‐nucleation embryo in the formation of aerosols in wet environments.  相似文献   

9.
Li  Zhi  Shen  Xia  Zhao  Zhen 《Research on Chemical Intermediates》2022,48(1):339-349

The structures, electronic and magnetic properties of the FemOn@Cx (m?=?1–3, n?=?1–4, x?=?50, 60) clusters have been investigated by using PBE functional. The C50, C60 can significantly increase the structural stabilities of the FemOn molecules. Fe2O3@C50 and Fe3O4@C50 are more chemically stable than the Fe2O3@C60 and Fe3O4@C60 while FeO@C60 is more chemically stable than the FeO@C50. The spin densities of the FemOn fragments degenerate to zero. Carbon encapsulation leads to the internal charges of the FemOn fragments transfer from 4 s to 4p orbital.

  相似文献   

10.
Uranium(IV) complexation by 2-furoic acid (2-FA) was examined to better understand the effects of ligand identity and reaction conditions on species formation and stability. Five compounds were isolated: [UCl2(2-FA)2(H2O)2]n ( 1 ), [U4Cl10O2(THF)6(2-FA)2] ⋅ 2 THF ( 2 ), [U6O4(OH)4(H2O)3(2-FA)12] ⋅ 7 THF ⋅ H2O ( 3 ), [U6O4(OH)4(H2O)2(2-FA)12] ⋅ 8.76 H2O ( 4 ), and [U38Cl42O54(OH)2(H2O)20] ⋅ m H2O ⋅ n THF ( 5 ). The structures were determined by single-crystal X-ray diffraction and further characterized by Raman, IR, and optical absorption spectroscopy. The thermal stability and magnetic behavior of the compounds were also examined. Variations in the synthetic conditions led to notable differences in the structural units observed in the solid state. At low H2O/THF ratios, a tetranuclear oxo-bridged [U4O2] core was isolated. Aging of this solution resulted in the formation a U38 oxo cluster capped by chloro and water ligands. However, at increasing water concentrations only hexanuclear units were observed. In all cases, at temperatures of 100–120 °C, UO2 nanoparticles formed.  相似文献   

11.
The cooperative effects of hydrogen bonding in small water clusters (H2O)n (n=3–6) have been studied by using the partition of the electronic energy in accordance with the interacting quantum atoms (IQA) approach. The IQA energy splitting is complemented by a topological analysis of the electron density (ρ( r )) compliant with the quantum theory of atoms‐in‐molecules (QTAIM) and the calculation of electrostatic interactions by using one‐ and two‐electron integrals, thereby avoiding convergence issues inherent to a multipolar expansion. The results show that the cooperative effects of hydrogen bonding in small water clusters arise from a compromise between: 1) the deformation energy (i.e., the energy necessary to modify the electron density and the configuration of the nuclei of the isolated water molecules to those within the water clusters), and 2) the interaction energy (Eint) of these contorted molecules in (H2O)n. Whereas the magnitude of both deformation and interaction energies is enhanced as water molecules are added to the system, the augmentation of the latter becomes dominant when the size of the cluster is increased. In addition, the electrostatic, classic, and exchange components of Eint for a pair of water molecules in the cluster (H2O)n?1 become more attractive when a new H2O unit is incorporated to generate the system (H2O)n with the last‐mentioned contribution being consistently the most important part of Eint throughout the hydrogen bonds under consideration. This is opposed to the traditional view, which regards hydrogen bonding in water as an electrostatically driven interaction. Overall, the trends of the delocalization indices, δ(Ω,Ω′), the QTAIM atomic charges, the topology of ρ( r ), and the IQA results altogether show how polarization, charge transfer, electrostatics, and covalency contribute to the cooperative effects of hydrogen bonding in small water clusters. It is our hope that the analysis presented in this paper could offer insight into the different intra‐ and intermolecular interactions present in hydrogen‐bonded systems.  相似文献   

12.
LiOH is one of the strong bases among neutral molecules. What about hydroxides of small Lin (n = 2 ? 5) clusters? The addition of a single atom to a cluster sometimes has dramatic effects on its reactivity. This fact motivated us to perform an ab initio MP2/6‐311++G(d, p) investigation on LinOH species (n = 1 ? 5). These LinOH species are stabilized by both ionic as well as covalent interactions, and are found to be stable against elimination of LiOH and OH. We have determined their gas and aqueous phase basicity by considering hypothetical protonation reactions. The calculated proton affinities of LinOH (n ≥ 2) suggest their reduced basicity as compared to LiOH by 50–100 kJ/mol. The NBO charges and the highest occupied molecular orbitals also reveal the electride and alkalide characteristics of Li2OH and Li3OH, respectively. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
The yields of tris(2,4-pentanedionato)chrvmium(III) (Cr(acac)3) formed in the presence of either the ammonia (Am), ethanoate (ET), trichloroethanoate (TCE), or trifluoroethanoate (TFE) ligand in high pH aqueous solution, were compared with those from a medium containing only hydroxyl and water as the principal ligands besides the acac. The presence of Am, ET, and TCE drastically reduced the yields at pH’s 9.5–10.5, 7.5–9.0/9.5–11.0, and 9.0–12.0, respectively in increasing order ET > Am < TCE. The role of Am is attributed mainly to the oxo-bridged species ((OH)m(H2O)nAm5-(m+n)Cr(O)(OH)CrAm5-(m+n)(H2O)n(OH)m)3-2m (1), ((OH)m(H2O)nAm5-(m+n)Cr(O)2CrAm5-(m+n)(H2O)n(OH)m)2-2m (2), and ((OH)m(H2O)nAm5-(m+n)Cr(O)(OH)CrAm4(m+n)(H2O)n(OH)m+1)2-2m (3). 2 is the most deactivating species mainly on the basis that the Cr-O bond of the oxo-bridge is suggested as being stronger than the Cr-O bond of the hydroxo-bridge. As for ET and TCE, oxo-bridged polymeric ethanoato- and trichloroethanoatochromium(III) species are also proposed as the main origin of the drastic deactivation of the reaction not observed for TFE due possibly, to the insignificance of oxo-bridges in tnfluoroethanoatochromium(III) species.  相似文献   

14.
Micelle formation of dodecyltrimethylammonium bromide (DTAB) was examined in the presence of α,ω-alkanediols applying conductivity measurements. Octanediol and hexanediol promoted the formation of mixed micelles of DTAB and the alcohol, but butanediol interfered with micellization. Analysis of the critical micelle concentration (cmc) based on the lattice model for mixed solution with the Bragg–Williams approximation indicated an unfavorable interaction between alcohol and water and a favorable interaction between the alcohol and surfactant, with the exception of butanediol. The exchange energy between alcohol and water was 0.5kT higher for alkanediol (C2n(OH)2) than for the corresponding regular alcohol (CnOH), which is believed to have resulted from the smaller mixing entropy for the alkanediol than for the corresponding regular alcohol. It was inferred from the analysis that the cmc increase for C4(OH)2 was caused by favorable interaction with water but unfavorable interaction with the micellar surfactant.  相似文献   

15.
A new two‐dimensional (2D) oxosulfide, (N2H4)2Mn3Sb4S83‐OH)2 ( 1 ), has been successfully synthesized under surfactant–thermal conditions with hexadecyltributylphosphonium bromide as the surfactant. Compound 1 has a layered structure and contains a novel [Mn33‐OH)2]n chain along the b‐axis. The photocatalytic activity for compound 1 has been demonstrated under visible‐light irradiation and continuous H2 evolution was observed. Our results indicate that surfactant–thermal synthesis could be a promising method for growing novel crystalline oxochalcogenides with interesting structures and properties.  相似文献   

16.
195Pt NMR chemical shifts of octahedral Pt(IV) complexes with general formula [Pt(NO3)n(OH)6 ? n]2?, [Pt(NO3)n(OH2)6 ? n]4 ? n (n = 1–6), and [Pt(NO3)6 ? n ? m(OH)m(OH2)n]?2 + n ? m formed by dissolution of platinic acid, H2[Pt(OH)6], in aqueous nitric acid solutions are calculated employing density functional theory methods. Particularly, the gauge‐including atomic orbitals (GIAO)‐PBE0/segmented all‐electron relativistically contracted–zeroth‐order regular approximation (SARC–ZORA)(Pt) ∪ 6–31G(d,p)(E)/Polarizable Continuum Model computational protocol performs the best. Excellent second‐order polynomial plots of δcalcd(195Pt) versus δexptl(195Pt) chemical shifts and δcalcd(195Pt) versus the natural atomic charge QPt are obtained. Despite of neglecting relativistic and spin orbit effects the good agreement of the calculated δ 195Pt chemical shifts with experimental values is probably because of the fact that the contribution of relativistic and spin orbit effects to computed σiso 195Pt magnetic shielding of Pt(IV) coordination compounds is effectively cancelled in the computed δ 195Pt chemical shifts, because the relativistic corrections are expected to be similar in the complexes and the proper reference standard used. To probe the counter‐ion effects on the 195Pt NMR chemical shifts of the anionic [Pt(NO3)n(OH)6 ? n]2? and cationic [Pt(NO3)n(OH2)6 ? n]4 ? n (n = 0–3) complexes we calculated the 195Pt NMR chemical shifts of the neutral (PyH)2[Pt(NO3)n(OH)6 ? n] (n = 1–6; PyH = pyridinium cation, C5H5NH+) and [Pt(NO3)n(H2O)6 ? n](NO3)4 ? n (n = 0–3) complexes. Counter‐anion effects are very important for the accurate prediction of the 195Pt NMR chemical shifts of the cationic [Pt(NO3)n(OH2)6 ? n]4 ? n complexes, while counter‐cation effects are less important for the anionic [Pt(NO3)n(OH)6 ? n]2? complexes. The simple computational protocol is easily implemented even by synthetic chemists in platinum coordination chemistry that dispose limited software availability, or locally existing routines and knowhow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Li  Zhi  Zhao  Zhen 《Structural chemistry》2020,31(6):2271-2280

The structures, magnetic, and electronic properties of the ground-state (Fe2N)m (m?=?1–4) and (Fe3N)n (n?=?1–3) clusters have been investigated by using first-principles. The structure of the (Fe2N)m and (Fe3N)n clusters is a compromise that the N atoms approach more Fe atoms and the N atoms repel each other. The structural stabilities of the (Fe2N)m and (Fe3N)n clusters increase with the increasing of the N ratio except for the Fe6N3 clusters. The (Fe2N)m (m?=?1–4) and Fe9N3 clusters exhibit more kinetic stabilities than pure iron clusters. The N substitution can decrease the average spin densities of small iron clusters except for the Fe6N2 and Fe8N4 clusters. The Fe–N bonds exhibit certain covalent bond characteristics.

  相似文献   

18.
Gold phosphides show unique optical or semiconductor properties and there are extensive high technology applications, e.g. in laser diodes, etc. In spite of the various AuP structures known, the search for new materials is wide. Laser ablation synthesis is a promising screening and synthetic method. Generation of gold phosphides via laser ablation of red phosphorus and nanogold mixtures was studied using laser desorption ionisation time‐of‐flight mass spectrometry (LDI TOFMS). Gold clusters Aum+ (m = 1 to ~35) were observed with a difference of one gold atom and their intensities were in decreasing order with respect to m. For Pn+ (n = 2 to ~111) clusters, the intensities of odd‐numbered phosphorus clusters are much higher than those for even‐numbered phosphorus clusters. During ablation of P‐nanogold mixtures, clusters Aum+ (m = 1‐12), Pn+ (n = 2‐7, 9, 11, 13–33, 35–95 (odd numbers)), AuPn+ (n = 1, 2–88 (even numbers)), Au2Pn+ (n = 1‐7, 14–16, 21–51 (odd numbers)), Au3Pn+ (n = 1‐6, 8, 9, 14), Au4Pn+ (n = 1‐9, 14–16), Au5Pn+ (n = 1‐6, 14, 16), Au6Pn+ (n = 1‐6), Au7Pn+ (n = 1‐7), Au8Pn+ (n = 1‐6, 8), Au9Pn+ (n = 1‐10), Au10Pn+ (n = 1‐8, 15), Au11Pn+ (n = 1‐6), and Au12Pn+ (n = 1, 2, 4) were detected in positive ion mode. In negative ion mode, Aum (m = 1–5), Pn (n = 2, 3, 5–11, 13–19, 21–35, 39, 41, 47, 49, 55 (odd numbers)), AuPn (n = 4–6, 8–26, 30–36 (even numbers), 48), Au2Pn (n = 2–5, 8, 11, 13, 15, 17), Au3Pn (n = 6–11, 32), Au4Pn (n = 1, 2, 4, 6, 10), Au6P5, and Au7P8 clusters were observed. In both modes, phosphorus‐rich AumPn clusters prevailed. The first experimental evidence for formation of AuP60 and gold‐covered phosphorus Au12Pn (n = 1, 2, 4) clusters is given. The new gold phosphides generated might inspire synthesis of new Au‐P materials with specific properties. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Enzymatic complexes, constructed by linear‐dendritic copolymers and laccase, are used for the unprecedented one‐pot biotransformation of fullerene (C60) into epoxide‐ and hydroxyl‐derivatives under mild and environmentally friendly reaction conditions (45 °C and aqueous medium). The reaction is catalyzed by mediator pairs ‐ N‐hydroxy‐5‐norbornene‐2,3‐dicarboxylic acid imide/1‐Hydroxybenzotriazole or 2,2′‐Azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid)/1‐Hydroxybenzotriazole used in equimolar amounts. After 24 and 48 h, the biotransformation products ? C60On, C60(OH)n, C60(H)n(OH)n, and/or C60On(H)m(OH)m range between 50 and 78%, respectively. Their structure is revealed by FTIR, NMR, and mass‐spectrometry. The mechanism of the process is discussed and elucidated. The reaction procedure allows the repeated usage of the enzyme/linear‐dendritic complex, which retains its catalytic activity after several cycles. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Uranium(IV) oxide clusters, colloids, and materials are designed and studied for 1) nuclear materials applications, 2) understanding the environmental fate and transport of actinides, and 3) exploring the complex bonding behavior of open-shell f-elements. UIV-oxyhydroxsulfate clusters are particularly relevant in industrial processes and in nature. Recent studies have shown that counter-cations to these polynuclear anions differentiate rich structural topologies in the solid-state. Herein, we present nine different structures with wheel-shaped [U70(OH)36(O)64(SO4)60]4− (U70) linked into one- and two-dimensional frameworks with sulfate, divalent transition metals (CrII, FeII, CoII, NiII) and UV. Small-angle X-ray scattering of these phases dissolved in butylamine reveals differing supramolecular assembly of U70 clusters, controlled primarily by sulfates. However, observed trends in transition metal linking guide future design of U70 materials with different topologies. Finally, U70 linking via UIV-O-UV-O-UIV bridges presents a rare example of mixed-oxidation-state uranium oxides without disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号