首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   7篇
物理学   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2010年   1篇
  2008年   1篇
  1974年   1篇
  1969年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
In the context of the SAMPL5 blinded challenge standard free energies of binding were predicted for a dataset of 22 small guest molecules and three different host molecules octa-acids (OAH and OAMe) and a cucurbituril (CBC). Three sets of predictions were submitted, each based on different variations of classical molecular dynamics alchemical free energy calculation protocols based on the double annihilation method. The first model (model A) yields a free energy of binding based on computed free energy changes in solvated and host-guest complex phases; the second (model B) adds long range dispersion corrections to the previous result; the third (model C) uses an additional standard state correction term to account for the use of distance restraints during the molecular dynamics simulations. Model C performs the best in terms of mean unsigned error for all guests (MUE \(3.2\,<\,3.4\,<\,3.6\,\text{kcal}\,\text{mol}^{-1}\)—95 % confidence interval) for the whole data set and in particular for the octa-acid systems (MUE \(1.7\,<\,1.9\,<\,2.1\,\text{kcal}\,\text{mol}^{-1}\)). The overall correlation with experimental data for all models is encouraging (\(R^2\, 0.65\,<\,0.70<0.75\)). The correlation between experimental and computational free energy of binding ranks as one of the highest with respect to other entries in the challenge. Nonetheless the large MUE for the best performing model highlights systematic errors, and submissions from other groups fared better with respect to this metric.  相似文献   
2.
In the context of the SAMPL6 challenges, series of blinded predictions of standard binding free energies were made with the SOMD software for a dataset of 27 host–guest systems featuring two octa-acids hosts (OA and TEMOA) and a cucurbituril ring (CB8) host. Three different models were used, ModelA computes the free energy of binding based on a double annihilation technique; ModelB additionally takes into account long-range dispersion and standard state corrections; ModelC additionally introduces an empirical correction term derived from a regression analysis of SAMPL5 predictions previously made with SOMD. The performance of each model was evaluated with two different setups; buffer explicitly matches the ionic strength from the binding assays, whereas no-buffer merely neutralizes the host–guest net charge with counter-ions. ModelC/no-buffer shows the lowest mean-unsigned error for the overall dataset (MUE 1.29?<?1.39?<?1.50 kcal mol?1, 95% CI), while explicit modelling of the buffer improves significantly results for the CB8 host only. Correlation with experimental data ranges from excellent for the host TEMOA (R2 0.91?<?0.94?<?0.96), to poor for CB8 (R2 0.04?<?0.12?<?0.23). Further investigations indicate a pronounced dependence of the binding free energies on the modelled ionic strength, and variable reproducibility of the binding free energies between different simulation packages.  相似文献   
3.
4.
Journal of Computer-Aided Molecular Design - Approaches for computing small molecule binding free energies based on molecular simulations are now regularly being employed by academic and industry...  相似文献   
5.
In the context of the SAMPL5 challenge water-cyclohexane distribution coefficients for 53 drug-like molecules were predicted. Four different models based on molecular dynamics free energy calculations were tested. All models initially assumed only one chemical state present in aqueous or organic phases. Model A is based on results from an alchemical annihilation scheme; model B adds a long range correction for the Lennard Jones potentials to model A; model C adds charging free energy corrections; model D applies the charging correction from model C to ionizable species only. Model A and B perform better in terms of mean-unsigned error (\(\hbox {MUE}=6.79<6.87<6.95 \log\) D units ? 95 % confidence interval) and determination coefficient \((\hbox {R}^2 = 0.26< 0.27< 0.28)\), while charging corrections lead to poorer results with model D (\(\hbox {MUE}=12.8<12.63<12.98\) and \(\hbox {R}^2 = 0.16<0.17<0.18\)). Because overall errors were large, a retrospective analysis that allowed co-existence of ionisable and neutral species of a molecule in aqueous phase was investigated. This considerably reduced systematic errors (\(\hbox {MUE}=1.87<1.97<2.07\) and \(\hbox {R}^2 = 0.35<0.40<0.45\)). Overall accurate \(\log D\) predictions for drug-like molecules that may adopt multiple tautomers and charge states proved difficult, indicating a need for methodological advances to enable satisfactory treatment by explicit-solvent molecular simulations.  相似文献   
6.
We report on the design and fabrication of complex microcomponents based on multimode optical interference, using a CO2 laser ablation technique. Mode confinement, power division and losses are assessed. Power splitters show a good balance in the intensity division but beam combiners exhibit a variation in output power. The devices are compact and show a low sensitivity to imperfections in the fabrication process. The results demonstrate the technique's potential to develop multiport integrated circuits.  相似文献   
7.
8.
Measurements on RF power absorption in microwave discharges at 2.45 GHz, at pressures from 1 to 30 Torr in N2 and from 1 to 500 Torr in Ar, are described. A linear slow-wave structure of the strapped-bar type was employed for coupling RF energy to the plasma. From measurements on the plasma volume and on the total power absorbed, the variation with gas pressure of the RF power density in the plasma was obtained. For an incident power of 1 kW, power densities as high as 2-3 W/cm3 over relatively large plasma volumes could be achieved. The experimental data were used to calculate the pressure dependence of the electron density in an argon plasma, for an incident power of 1 kW.  相似文献   
9.
GFP mutants are known to display fluorescence flickering, a process that occurs in a wide time range. Because serine 65, threonine 203, glutamate 222, and histidine 148 have been indicated as key residues in determining the GFP fluorescence photodynamics, we have focused here on the role of histidine 148 and glutamate 222 by studying the fluorescence dynamics of GFPmut2 (S65A, V68L, and S72A GFP) and its H148G (Mut2G) and E222Q (Mut2Q) mutants. Two relaxation components are found in the fluorescence autocorrelation functions of GFPmut2: a 10-100 micros pH-dependent component and a 100-500 micros laser-power-dependent component. The comparison of these three mutants shows that the mutation of histidine 148 to glycine induces a 3-fold increase in the protonation rate, thereby indicating that the protonation-deprotonation of the chromophore occurs via a proton exchange with the solution mediated by the histidine 148 residue. The power-dependent but pH-independent relaxation mode, which is not affected by the E222Q and H148G mutations, is due to an excited-state process that is probably related to conformational rearrangements of the chromophore after the photoexcitation, more than to the chromophore excited-state proton transfer.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号