首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   665篇
  免费   22篇
  国内免费   5篇
化学   471篇
晶体学   10篇
力学   18篇
数学   33篇
物理学   160篇
  2024年   1篇
  2023年   12篇
  2022年   13篇
  2021年   29篇
  2020年   14篇
  2019年   29篇
  2018年   22篇
  2017年   14篇
  2016年   22篇
  2015年   14篇
  2014年   21篇
  2013年   72篇
  2012年   32篇
  2011年   56篇
  2010年   25篇
  2009年   21篇
  2008年   29篇
  2007年   26篇
  2006年   26篇
  2005年   37篇
  2004年   29篇
  2003年   35篇
  2002年   14篇
  2001年   14篇
  2000年   14篇
  1999年   7篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   10篇
  1991年   2篇
  1990年   8篇
  1989年   1篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   4篇
  1982年   2篇
  1975年   1篇
  1974年   1篇
  1970年   2篇
  1938年   1篇
排序方式: 共有692条查询结果,搜索用时 31 毫秒
1.
Four mononuclear copper(II) and zinc(II) complexes were synthesized by the reaction of copper and zinc salts with 3,4-dichlorophenylactic acid, 2-bromophenylactic acid, biphenylacetic acid (O-donor ligand) and bipyridine (N-donor ligands) having the general formulae [(L)2Cu(bp)(H2O)] ( 1 ), [(BpA)2Cu(bp)] ( 2 ), [(L)2Zn(bp)(H2O)] ( 3 ) and [(L*)2Zn(bp)] ( 4 ) (L = 3,4-dichlorophenylacetate, L* = 2-bromophenylacetate bp = bipyridine, and BpA = biphenylacetate). Structures of all compounds were characterized through FT-IR spectroscopy and X-ray diffraction analysis. FT-IR spectra of all complexes confirmed the binding mode of Cu-O and Zn-O. XRD data revealed that complexes 1 – 3 exhibited distorted octahedral arrangement, whereas complex 4 has a distorted tetrahedral environment. Micellization behavior was examined with anionic surfactant (SDS) by conductance measurement as well as absorption spectral analysis. DNA binding study was assessed through viscosity measurement and UV/Vis spectrophotometry. DPPH free radical scavenging assay was measured by UV/Vis spectrophotometry. The results showed nice biological potential of all the complexes.  相似文献   
2.
The optical properties, electronic charge density, electronic structure of the new layered selenides materials, BaGdCuSe3, CsUCuSe3, CsZrCuSe3, and CsGdZnSe3 compounds have been calculated by using the full potential and linear augmented plane wave (FP-LAPW) methods as applied in the WIEN2k package, which is based on the density functional theory. The ALnMSe3 compound's structure of these was (A = Cs, Ba; Ln = Zr, Gd, U; M = Cu, Zn) is composed of (n = 1, 2) layers, which might be separated by A atoms. It is to be observed that there is strong hybridization between the s, p, and d states of Zr, Gd, and Cu atoms. Around the gadolinium atom, the charge density contours are completely circular, but the Gadolinium “Gd” atom shows an ionic nature. To calculate the refractive index, we used Kramer's Kronig correlations with the imaginary part dielectric function. The decrease in the refractive index is due to the lack of probability for direct excitation of the electrons, resulting in a loss of energy. The value of the static refractive index for all reference compounds is about 1.75–2.25, which is indication that the material used in optoelectronic devices.  相似文献   
3.
Three-dimensional (3D) geopolymer printing (3DGP) technology is a rapidly evolving digital fabrication method used in the construction industry. This technology offers significant benefits over 3D concrete printing in terms of energy saving and reduced carbon emissions, thus promoting sustainability. 3DGP technology is still evolving, and researchers are striving to develop high-performance printable materials and different methods to improve its robustness and efficiency. Carbon-based nanomaterials (CBNs) with beneficial properties have a wide range of applications in various fields, including as concrete/geopolymer systems in construction. This paper comprehensively reviews the research progress on carbon-based nanomaterials (CBNs) used to develop extrusion-based 3D geopolymer printing (3DGP) technology, including dispersion techniques, mixing methods, and the materials′ performance. The rheological, mechanical, durability, and other characteristics of these materials are also examined. Furthermore, the existing research limitations and the prospects of using 3DGP technology to produce high-quality composite mixtures are critically evaluated.  相似文献   
4.
Antimicrobial resistance and the shortage of novel antibiotics have led to an urgent need for new antibacterial drug leads. Several existing natural product scaffolds (including chelocardins) have not been developed because their suboptimal pharmacological properties could not be addressed at the time. It is demonstrated here that reviving such compounds through the application of biosynthetic engineering can deliver novel drug candidates. Through a rational approach, the carboxamido moiety of tetracyclines (an important structural feature for their bioactivity) was introduced into the chelocardins, which are atypical tetracyclines with an unknown mode of action. A broad‐spectrum antibiotic lead was generated with significantly improved activity, including against all Gram‐negative pathogens of the ESKAPE panel. Since the lead structure is also amenable to further chemical modification, it is a platform for further development through medicinal chemistry and genetic engineering.  相似文献   
5.
The high specific capacitance along with good cycling stability are crucial for practical applications of supercapacitors,which always demands high-performance and stable electrode materials.In this work,we report a series of ternary composites of CoO-ZnO with different fractions of reduced graphene oxide(rGO) synthesized by in-situ growth on nickel foam,named as CZG-1,2 and 3,respectively.This sort of binder-free electrodes presents excellent electrochemical properties as well as large capacitance due to their low electrical resistance and high oxygen vacancies.Particularly,the sample of CZG-2(CoO-ZnO/rGO 20 mg) in a nanoreticular structure shows the best electrochemical performance with a maximum specific capacitance of 1951.8 F/g(216.9 mAh/g) at a current intensity of 1 A/g.The CZG-2-based hybrid supercapacitor delivers a high energy density up to 45.9 Wh/kg at a high power density of 800 W/kg,and kept the capacitance retention of 90.1% over 5000 charge-discharge cycles.  相似文献   
6.
The study reports a rapid and short analytical technique for separation, characterization, and quantitation along with comparative pharmacological effect of curcuminoids in cerebral ischemia. Flash chromatography, using silica and diol columns along with gradient mobile phase, was utilized to separate three curcuminoids, i.e., curcumin (Cur), demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC) for the first time. The separated peaks were monitored at 200–360?nm, whereas the purity of compounds (96.2–97.6%) was determined through qualitative analysis such as infrared and 1H and 13C-nuclear magnetic resonance spectroscopy, mass spectrometry (MS), and differential scanning calorimetry. Furthermore, chitosan nanoparticles (CS-NPs) for curcuminoids were prepared and characterized through zeta sizer, zeta potential, scanning electron microscopy, and transmission electron microscopy. The developed ultra performance of liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry/mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) method showed simplified automation and shorter run time for Combi flash over conventional separation techniques. The CS-NPs for all the three curcuminoids and combined-curcuminoids (CCr) (combined and administered together for a synergistic effect), following intranasal administration in middle cerebral artery–occluded rats were evaluated for grip strength, locomotor activity, and histopathological examination where the anti-ischemic activity was observed, in terms of potency, for all three CS-NPs and CCr as CCr>Cur>DMC>>BDMC. Cur-CS-NPs exhibited more potency among Cur, DMC, and BDMC, whereas CCr was the more potent anti-ischemic drug compared to Cur, DMC, and BDMC. For Cur the characteristic activity is proposed because of the presence of methoxy group on the phenyl ring whereas for CCr it is synergistic effect of curcuminoids.  相似文献   
7.
Valorization of vegetable oil waste residues is gaining importance due to their high protein and polyphenol contents. Protease inhibitors (PIs), proteins from these abundantly available waste residues, have recently gained importance in treating chronic diseases. This research aimed to use canola meal of genetically diverse Brassica napus genotypes, BLN-3347 and Rivette, to identify PIs with diverse functionalities in therapeutic and pharmacological applications. The canola meal PI purification steps involved: native PAGE and trypsin inhibition activity, followed by ammonium sulfate fractionation, anion exchange, gel filtration, and reverse-phase chromatography. The purified PI preparations were characterized using SDS-PAGE, isoelectric focusing (IEF), and N terminal sequencing. SDS-PAGE analysis of PI preparations under native reducing and nonreducing conditions revealed three polymorphic PIs in each genotype. The corresponding IEF of the genotype BLN-3347, exhibited three acidic isoforms with isoelectric points (pI) of 4.6, 4.0, and 3.9, while Rivette possessed three isoforms, exhibiting two basic forms of pI 8.65 and 9.9, and one acidic of pI 6.55. Purified PI preparations from both the genotypes displayed dipeptidyl peptidase-IV (DPP-IV) and angiotensin-converting enzyme (ACE) inhibition activities; the BLN-3347 PI preparation exhibited a strong inhibitory effect with lower IC50 values (DPP-IV 37.42 µg/mL; ACE 129 µg/mL) than that from Rivette (DPP-IV 67.97 µg/mL; ACE 376.2 µg/mL). In addition to potential human therapy, these highly polymorphic PIs, which can inhibit damaging serine proteases secreted by canola plant pathogens, have the potential to be used by canola plant breeders to seek qualitative trait locus (QTLs) linked to genes conferring resistance to canola diseases.  相似文献   
8.
In the current study, in vitro antimicrobial and antioxidant activities and in vivo anti-inflammatory and analgesic activities of Scutellaria edelbergii Rech. f. (crude extract and subfractions, i.e., n-hexane, ethyl acetate (EtOAc), chloroform, n-butanol (n-BuOH) and aqueous) were explored. Initially, extraction and fractionation of the selected medicinal plant were carried out, followed by phytochemical qualitative tests, which were mostly positive for all the extracts. EtOAc fraction possessed a significant amount of phenolic (79.2 ± 0.30 mg GAE/g) and flavonoid (84.0 ± 0.39 mg QE/g) content. The EtOAc fraction of S. edelbergii exhibited appreciable antibacterial activity against Gram-negative (Escherichia coli and Klebsiella pneumoniae) strains and significant zones of inhibition were observed against Gram-positive bacterial strains (Bacillus subtilis and Staphylococcus aureus). However, it was found inactive against Candida Albicans and Fusarium oxysporum fungal strains. The chloroform fraction was the most effective with an IC50 value of 172 and 74 µg/mL against DPPH (1,1-Diphenyl-2-picryl-hydrazyl) and ABTS assays, in comparison with standard ascorbic acid 59 and 63 µg/mL, respectively. Moreover, the EtOAc fraction displayed significant in vivo anti-inflammatory activity (54%) using carrageenan-induced assay and significant (55%) in vivo analgesic activity using acetic acid-induced writing assay. In addition, nine known compounds, ursolic acid (UA), ovaul (OV), oleanolic acid (OA), β-sitosterol (BS), micromeric acid (MA), taraxasterol acetate (TA), 5,3′,4′-trihydroxy-7-methoxy flavone (FL-1), 5,7,4′-trihydroxy-6,3′-dimiethoxyflavone (FL-2) and 7-methoxy catechin (FL-3), were isolated from methanolic extract of S. edelbergii. These constituents have never been obtained from this source. The structures of all the isolated constituents were elucidated by spectroscopic means. In conclusion, the EtOAc fraction and all other fractions of S. edelbergii, in general, displayed a significant role as antibacterial, free radical scavenger, anti-inflammatory and analgesic agents which may be due to the presence of these constituents and other flavonoids.  相似文献   
9.
The dispersion properties and Landau damping rate of ion-acoustic waves (IAWs) with the hybrid Cairns-Tsallis distributed (CTD) electrons and Maxwellian ions are investigated using the plasma kinetic model based on Vlasov-Poisson's equations. For both super-extensive (q < 1) and sub-extensive (q > 1) plasmas, the dielectric response function, real frequency, and Landau damping rate of IAWs are derived. By taking the effect of θi, e (ion-to-electron temperature ratio) into account, it is found that with the increase of ion temperature, the real frequency and wave dispersion effects increase as well (for both super-extensive and sub-extensive cases). Exploring the properties of the Landau damping rate of IAWs with the simultaneous presence of non-thermal parameter α and non-extensive parameter q, a comparison of numerical and analytical results is presented. It is found that in different ranges of θe, i (electron-to-ion temperature ratio), on decreasing the values of the non-extensive parameter and increasing values of the non-thermal parameter, the weak damping rate is observed (vice versa) in super-extensive or super-thermal plasma, although the trend of the damping rate in sub-thermal plasma is similar (as in the case of super-thermal plasma) but is less weak. It is further revealed that the damping rate of IAWs in thermal plasmas (Maxwellian) is stronger than the damping rate of IAWs in the case of non-thermal plasmas (CTD). The current study is applicable to provide deep insight and further allow the exploration of electrostatic plasma modes in different space and laboratory plasma environments where the hybrid CTD plasma exists.  相似文献   
10.
Cellulose - This study focuses on the synergistic effects of hydroxide based nanoparticles namely aluminum trihydrate (ATH) and zirconium hydroxide (ZHO) on the mechanical characteristics, thermal...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号