首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
化学   14篇
数学   2篇
物理学   10篇
  2016年   1篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   3篇
  2001年   2篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
Kinetics of the reactions of butylmagnesium chloride and phenylmagnesium bromide with tetraethoxysilane and methyltrichlorosilane was investigated in diethyl ether and diethyl ether-toluene mixtures. Replacement of ether by toluene significantly accelerates the reaction with alkoxysilanes, while no effect was found for the reaction with chlorosilanes. We established that the reaction with alkoxysilanes consists of replacement of a donor molecule at the magnesium center by the silane followed by subsequent rearrangement of the complex to products through a four-center transition state. Chlorosilanes react differently without solvent molecule replacement but also via a four-center transition state. Large negative activation entropies are consistent with formation of cyclic transition states. Small activation enthalpy values together with remarkable exothermicity point to early transition states of the reactions.  相似文献   
2.
The solvation effects observed in water‐organic solutions were studied by combining data for reaction kinetics and dissolution equilibria by means of a linear free‐energy (similarity) analysis. Kinetic data for the pH‐independent hydrolysis of (4‐methoxyphenyl)‐2,2‐dichloroacetate measured in this work and solubility data for naphthalene, and other substrates of low polarity, in aqueous binary mixtures of methanol, ethanol, acetonitrile, dimethyl sulfoxide (DMSO), and 1,4‐dioxane were used. Linear similarity relationships were discovered for these data over the full range of solvent compositions studied. To gain insight into the similarities observed between these different phenomena, molecular dynamics simulations were carried out for naphthalene and an ester in water–acetonitrile solutions. The results revealed considerable preferential solvation of these substrates by the co‐solvent. Linear relationships between the experimental data and the mole fractions of acetonitrile in the solvation shells of substrates were found. Surprisingly, a linear relationship was found between the mole fractions of acetonitrile in the solvation shells of the ester and naphthalene. This linearity indicated that a similar solvation mechanism governs even such different phenomena as dissolution and reaction kinetics. The relationships between the experimental data and the results of the molecular dynamics calculations found in this work explained the solvent effect observed in water‐organic solutions on the molecular level. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
3.
A LFE (Linear Free Energy) analysis of kinetic data for different organic reactions in various organic aqueous solutions was carried out. The rate constants of these reactions were compared with those for the solvolysis of tert-butyl chloride in the same solvents in terms of the LFE Relationships, and linear plots were observed in a wide range of the co-solvent content. This similarity points to a common nature of the solvent effect in these reactions in variety of water–organic mixtures, regardless of largely different reaction mechanisms. We explain these results by the prevalence of hydrophobic stabilization of the initial state of these reactions in water-rich solvent mixtures. Recently the same conclusion was also made on the basis of investigations into sonication effects in kinetics of organic reactions. A considerable contribution of hydrophobic effects to the Y scale by Grunwald and Winstein was deduced.  相似文献   
4.
Effect of ultrasound on ester hydrolysis in aqueous ethanol.   总被引:1,自引:0,他引:1  
Kinetics of the acid-catalyzed hydrolysis of ethyl acetate in ethanol-water binary solutions were investigated without sonication and under ultrasound at 22 kHz. Rate enhancements by 1.03-2.4 times were found with a minimum at 18 wt.% and a maximum at 45 wt.% of ethanol. The results suggest that ultrasonic acceleration of the reaction may be interrelated to the perturbation of the molecular structure of the binary solvent.  相似文献   
5.
Kinetic effects of sonication on ester hydrolysis and tert‐butyl chloride solvolysis, studied in ethanol–water binary solvent, are discussed in terms of quantitative relationships between their magnitude and the hydrophobicity of reagents. A number of conclusions were drawn from the observed linear free‐energy (LFE) relationships. Independent of reaction mechanism, the decrease in reaction rates with increasing ethanol content in the solvent is mainly due to hydrophobic stabilization of the ground state. While hydrophobic species can be hidden in the ethanol clusters present in the region XEtOH > 0.15, at lower ethanol contents hydrophobic reagents are weakly solvated and the hydrophobic stabilization can be easily overcome by sonication. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
6.
Kinetics of the reactions of phenylmagnesium chloride and bromide and diphenylmagnesium with chlorosilanes were investigated in tetrahydrofurane (THF) and in THF-hydrocarbon mixtures. The reaction in THF is much faster than that in diethyl ether. Assuming coordination of magnesium halides with three molecules of THF, concentrations of all the species involved in Schlenk equilibrium were calculated. In the Grignard reaction, species R(2)Mg and RMgX react competitively accompanied by additional reaction paths involving electrophilic catalysis by magnesium halide. This conclusion also proved to be valid for the Grignard reaction with a ketone and probably can be expanded to any Grignard reaction. When Schlenk equilibrium is shifted far to the RMgX species, the catalytic pathways are insignificant. Substituents at the silicon center control the rate of the reaction through their inductive and steric effects.  相似文献   
7.
8.
Rate constants for the reactions of methylvinyldichlorosilane and tetraethoxysilane with alkylmagnesium chlorides RMgCl (R = Et, n-Bu, i-Bu, i-Pr, s-Bu, t-Bu) in diethyl ether were determined. Excellent correlations of rate data with steric constants ES(Si) by Cartledge and v′ by Charton were found for the reaction of methylvinyldichlorosilane. Linear correlations with break points were obtained for the tetraethoxysilane reaction. It was assumed that this could be referred to a change in the reaction mechanism.  相似文献   
9.
Kinetics of the benzoin condensation of benzaldehyde in presence of KCN as the catalyst in water and in ethanol-water binary solutions were investigated without sonication and under ultrasound at 22 kHz. A statistically significant 20% decrease of the rate was observed in water. The retardation effect of ultrasound gradually decreases up to 45 wt% ethanol content. We report an evidence of ultrasonic retardation of reactions and thereby a direct evidence for sonochemical processes in the bulk solution. Ultrasound can disturb solvation of the species in the solution. If breaking down the stabilization of the encounter complexes between the reagents, sonication hinders the reaction while perturbation of the solvent-stabilization of the reagents accelerates the reaction.  相似文献   
10.
The kinetics of KCN-catalyzed benzoin condensation of benzaldehyde in water and ethanol-water binary mixtures was investigated both under ultrasound at 22 kHz and without sonication. Thermodynamic activation parameters were calculated from kinetic data obtained at 35, 50, and 65 degrees C. Evidence that ultrasound can retard reactions is reported and hence a direct proof that sonochemical processes occur in the bulk solution. Former results and literature data for ester hydrolyses and tert-butyl chloride solvolysis are involved in the discussion. A quantitative relationship between sonication effects and the hydrophobicity of reagents is presented for the first time. Ultrasound affects hydrophobic interactions with the solvent, which are not manifested in conventional kinetics. When it suppresses the stabilization of the encounter complexes between reagents, sonication hinders the reaction but accelerates it when it perturbs the hydrophobic stabilization of the ground state of a reagent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号