首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   4篇
化学   28篇
物理学   47篇
  2016年   2篇
  2015年   2篇
  2013年   4篇
  2012年   6篇
  2011年   10篇
  2010年   2篇
  2009年   5篇
  2008年   7篇
  2007年   7篇
  2006年   3篇
  2005年   4篇
  2003年   5篇
  2002年   6篇
  2000年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1988年   1篇
  1986年   2篇
  1981年   1篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
1.
2.
Understanding the nature of active sites in metal‐supported catalysts is of great importance towards establishing their structure–property relationships. The outstanding catalytic performance of metal‐supported catalysts is frequently ascribed to the synergic effect of different active sites, which is however not well spectroscopically characterized. Herein, we report the direct detection of surface Zn species and 1H–67Zn internuclear interaction between Zn2+ ions and Brønsted acid sites on Zn‐modified ZSM‐5 zeolites by high‐field solid‐state NMR spectroscopy. The observed promotion of C?H bond activation of methane is rationalized by the enhanced Brønsted acidity generated by synergic effects arising from the spatial proximity/interaction between Zn2+ ions and Brønsted acidic protons. The concentration of synergic active sites is determined by 1H–67Zn double‐resonance solid‐state NMR spectroscopy.  相似文献   
3.
A new decoupling composite pulse sequence is proposed to remove the broadening on spin S=1/2 magic-angle spinning (MAS) spectra arising from the scalar coupling with a quadrupolar nucleus I. It is illustrated on the (31)P spectrum of an aluminophosphate, AlPO(4)-14, which is broadened by the presence of (27)Al/(31)P scalar couplings. The multiple-pulse (MP) sequence has the advantage over the continuous wave (CW) irradiation to efficiently annul the scalar dephasing without reintroducing the dipolar interaction. The MP decoupling sequence is first described in a rotor-synchronised version (RS-MP) where one parameter only needs to be adjusted. It clearly avoids the dipolar recoupling in order to achieve a better resolution than using the CW sequence. In a second improved version, the MP sequence is experimentally studied in the vicinity of the perfect rotor-synchronised conditions. The linewidth at half maximum (FWHM) of 65 Hz using (27)Al CW decoupling decreases to 48 Hz with RS-MP decoupling and to 30 Hz with rotor-asynchronised MP (RA-MP) decoupling. The main phenomena are explained using both experimental results and numerical simulations.  相似文献   
4.
We present several new methods that allow to obtain through-space 2D HETCOR spectra between spin-1/2 and half-integer quadrupolar nuclei in the solid state. These methods use the rotary-resonance concept to create hetero-nuclear coherences through the dipolar interaction instead of scalar coupling into the HMQC and refocused INEPT experiments for spin n/2 (n>1). In opposite to those based on the cross-polarization transfer to quadrupolar nuclei, the methods are very robust and easy to set-up.  相似文献   
5.
Second moments and spin-lattice relaxation times, T 1 and T , have been measured from 100 K to 400 K for the protons in powdered 1-bromo and 1-iodo-adamantanes. Analysis of these data have shown that the reorientations are uniaxial in the low temperature phases. In the high temperature disordered phase of bromo-adamantane, the reorientation is endospherical and a slow molecular translational motion also exists. In the high temperature disordered phase of iodo-adamantane the reorientation is 12-fold uniaxial, in agreement with the Incoherent Quasi-elastic Neutron Scattering (I.Q.N.S.) experiments. All the results correspond to the crystallographic structures deduced from X-ray scattering.  相似文献   
6.
The multiple-quantum magic-angle spinning (MQMAS) and satellite-transition magic-angle spinning (STMAS) experiments refocus second-order quadrupolar broadening of half-integer quadrupolar spins in the form of two-dimensional experiments. Isotropic shearing is usually applied along the indirect dimension of the 2D spectra such that an isotropic projection free of anisotropic quadrupolar broadening can be obtained. An alternative shear transformation by a factor equal to the coherence level (quantum number) selected during the evolution period is proposed. Such a transformation eliminates chemical shift along the indirect dimension leaving only the second-order quadrupolar-induced shift and anisotropic broadening, and is expected to be particularly useful for disordered systems. This transformation, dubbed Q-shearing, can help avoid aliasing problems due to large chemical shift ranges and spinning sidebands. It can also be used as an intermediate step to the isotropic representation for expanding the spectral window of rotor-synchronized experiments.  相似文献   
7.
The assignment of high-field (18.8 T) (17)O MAS and 3QMAS spectra has been completed by use of first-principles calculations for three crystalline sodium phosphates, Na 3P 3O 9, Na 5P 3O 10, and Na 4P 2O 7. In Na 3P 3O 9, the calculated parameters, quadrupolar constant ( C Q), quadrupolar asymmetry (eta Q), and the isotropic chemical shift (delta cs) correspond to those deduced experimentally, and the calculation is mandatory to achieve a complete assignment. For the sodium tripolyphosphate Na 5P 3O 10, the situation is more complex because of the free rotation of the end-chain phosphate groups. The assignment obtained with ab initio calculations can however be confirmed by the (17)O{ (31)P} MAS-J-HMQC spectrum. Na 4P 2O 7 (17)O MAS and 3QMAS spectra show a complex pattern in agreement with the computed NMR parameters, which indicate that all of the oxygens exhibit very similar values. These results are related to structural data to better understand the influence of the oxygen environment on the NMR parameters. The findings are used to interpret those results observed on a binary sodium phosphate glass.  相似文献   
8.
Direct covariance NMR spectroscopy, which does not involve a Fourier transformation along the indirect dimension, is demonstrated to obtain homonuclear correlation two-dimensional (2D) spectra in the solid state. In contrast to the usual 2D Fourier transform (2D-FT) NMR, in a 2D covariance (2D-Cov) spectrum the spectral resolution in the indirect dimension is determined by the resolution along the detection dimension, thereby largely reducing the time-consuming indirect sampling requirement. The covariance method does not need any separate phase correction or apodization along the indirect dimension because it uses those applied in the detection dimension. We compare in detail the specifications obtained with 2D-FT and 2D-Cov, for narrow and broad resonances. The efficiency of the covariance data treatment is demonstrated in organic and inorganic samples that are both well crystallized and amorphous, for spin -1/2 nuclei with 13C, 29Si, and 31P through-space or through-bond homonuclear 2D correlation spectra. In all cases, the experimental time has been reduced by at least a factor of 10, without any loss of resolution and signal to noise ratio, with respect to what is necessary with the 2D-FT NMR. According to this method, we have been able to study the silicate network of glasses by 2D NMR within reasonable experimental time despite the very long relaxation time of the 29Si nucleus. The main limitation of the 2D-Cov data treatment is related to the introduction of autocorrelated peaks onto the diagonal, which does not represent any actual connectivity.  相似文献   
9.
Gan and Kwak recently introduced two new tools for high-resolution 2D NMR methods applied to quadrupolar nuclei: double-quantum filtering in STMAS (DQF-STMAS) and the soft-pulse added mixing (SPAM) idea. Double-quantum filtering suppresses all undesired signals in the STMAS method with limited loss in sensitivity. With SPAM, all pathways are added constructively after the second hard-pulse instead of using a single pathway as previously. Here, the sensitivity, advantages and drawbacks of DQF-STMAS are compared to 3QMAS. Additionally, SPAM can be included into DQF-STMAS method, resulting in a net sensitivity gain with respect to 3QMAS of ca. 10-15.  相似文献   
10.
It is demonstrated that reliable aluminum–carbon distances can be measured in samples with 13C natural abundance by NMR spectroscopy. Overcoupled resonators, with only one radio‐frequency synthesizer and one amplifier, are used to irradiate in the same pulse sequence 27Al and 13C nuclei, which differ by only 3.6 % in Larmor frequencies. The combination of 27Al saturation pulse with heteronuclear dipolar recoupling yields dipolar dephasing of the 13C signal, which only depends on the Al? C distance and the efficiency of the saturation pulse. Therefore, reliable distances can be obtained by rapid fitting of experimental data to an analytical expression. It is demonstrated that with natural isotopic abundance this approach allows recovery of Al? C distances of 216 pm for the covalent bond in lithium tetraalkyl aluminates, commonly used as a co‐catalyst in olefin polymerization processes, and which range from 274 to 381 pm for the three carbon atoms in aluminum lactate. The accuracy of the measured internuclear distances is carefully estimated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号