首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
化学   20篇
数学   1篇
物理学   9篇
  2021年   3篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2002年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
排序方式: 共有30条查询结果,搜索用时 31 毫秒
1.
The KTa0.6Nb0.4O3 sols for chemical solution deposition of thin films were prepared from potassium acetate and transition metal ethoxides by the 2-methoxyethanol based route. The local environment of both transition metals after reflux times 1, 4, 24, and 48 h, whereby the crystallization behavior of the films was strongly affected, was monitored by extended X-ray absorption fine structure spectroscopy, at Ta L3 and Nb K edges. The Ta species existed in the sols as monomers, remaining stable even with prolonged reflux time. The Ta–O–K correlations were confirmed in all cases. In contrast, the Nb-alkoxide formed dimers, with a gradual formation of oligomeric species with prolonged refluxing. The Nb–O–K correlations were present after all reflux times. The number of K neighbours around Nb increased upon refluxing, saturating at 24 h.  相似文献   
2.
Organotitanium fluorides (C5Me4R)TiF3 (R = H, Me, Et) sublimate with formation of crystalline dimers. From solution, we obtained crystals of dimers and tetramers. The tetramer [{(C5Me5)TiF3}4] irreversibly dissociates in the solid state to dimers (DeltaH = 8.33 kcal mol(-1)). The variable-temperature (1)H and (19)F NMR spectroscopy measurements of the toluene-d(8) solution of [{(C5Me5)TiF3}2] revealed at 202 K one monomeric, two dimeric (with C2h and Cs symmetry), two tetrameric (with D2 and C2v symmetry), and two trimeric (both C2 symmetry) molecules. With the increase in temperature and dilution of the solution, the composition of the solution shifts to the smaller molecules. The thermodynamic and activation parameters for the reversible dissociation of dimers to monomers in the solution are DeltaH = 9.2 kcal mol(-1), DeltaS = 24.2 cal mol(-1) K(-1), DeltaH(double dagger) = 12.2 kcal mol(-1), DeltaS(double dagger) = 9.7 cal mol(-1) K(-1). The dissociation path with a weakly double-bridged transition-state dimer was proposed. The thermodynamic parameters for the reversible dissociation of the C2v tetramer to the dimers in solution are DeltaH = 7.9 kcal mol(-1) and DeltaS = 26.8 cal mol(-1) K(-1). From both tetramers, the D2 molecule is 0.34(5) kcal mol(-1) lower in enthalpy and 6.5(5) cal mol(-1) K(-1) lower in entropy than the C2v molecule. The structures of both trimers were proposed. The low-temperature 19F NMR spectra of the CDCl3 solution of [{(C5Me5)TiF3}2] are consistent with equilibria of a monomer, two dimers (with C2h and Cs symmetry), and a trimer. The vapor pressure osmometric molecular mass determination of CDCl3 solution of [{(C5Me5)TiF3}2] at 302 K is consistent with the equilibrium of the dimer and the monomer.  相似文献   
3.
4.
Several methods based on combinations of bisection, regula falsi, and parabolic interpolation has been developed. An interval bracketing ensures the global convergence while the combination with the parabolic interpolation increases the speed of the convergence. The proposed methods have been tested on a series of examples published in the literature and show good results.  相似文献   
5.
6.
7.
The Co–ferrite nanoparticles having a relatively uniform size distribution around 8 nm were synthesized by three different methods. A simple co-precipitation from aqueous solutions and a co-precipitation in an environment of microemulsions are low temperature methods (50 °C), whereas a thermal decomposition of organo-metallic complexes was performed at elevated temperature of 290 °C. The X-ray diffractometry (XRD) showed spinel structure, and the high-resolution transmission electron microscopy (HRTEM) a good crystallinity of all the nanoparticles. Energy-dispersive X-ray spectroscopy (EDS) showed the composition close to stoichiometric (~CoFe2O4) for both co-precipitated nanoparticles, whereas the nanoparticles prepared by the thermal decomposition were Co-deficient (~Co0.6Fe2.4O4). The X-ray absorption near-edge structure (XANES) analysis showed Co valence of 2+ in all the samples, Fe valence 3+ in both co-precipitated samples, but average Fe valence of 2.7+ in the sample synthesized by thermal decomposition. The variations in cation distribution within the spinel lattice were observed by structural refinement of X-ray absorption fine structure (EXAFS). Like the bulk CoFe2O4, the nanoparticles synthesized at elevated temperature using thermal decomposition displayed inverse spinel structure with the Co ions occupying predominantly octahedral lattice sites, whereas co-precipitated samples showed considerable proportion of cobalt ions occupying tetrahedral sites (nearly 1/3 for the nanoparticles synthesized by co-precipitation from aqueous solutions and almost 1/4 for the nanoparticles synthesized in microemulsions). Magnetic measurements performed at room temperature and at 10 K were in good agreement with the nanoparticles’ composition and the cation distribution in their structure. The presented study clearly shows that the distribution of the cations within the spinel lattice of the ferrite nanoparticles, and consequently their magnetic properties are strongly affected by the synthesis method used.  相似文献   
8.
The polyester polyurethanes, PU based on isophoronediisocyanate, polycaprolactone, and 1,4-butanediol with different amounts of functional groups introduced into the hard segments via second chain extender, 2,2′-bis-(hydroxymethyl) propionic acid, were investigated by electron spin resonance, ESR, spin label method, wide-angle X-ray diffraction, WAXD, optical microscopy and differential scanning calorimetry, DSC. The objective of this study is to clarify the effect of functional groups on the motional heterogeneity, microphase separation and crystallisation of the polyurethanes. The concentration of carboxylic groups varied from 0 to 0.45 mmol g−1. The temperature-dependent ESR spectra of spin labelled PU hard segments chain ends with stable nitroxide radical 2,2,6,6-tetramethyl-4-aminopiperidin-1-yloxyl are sensitive to the amount of functional groups attached to the hard segments. Composite ESR spectra of functionalized PU, with fast and slow component, suggest that PU hard segments are partitioned in two motionally different environments. According to the ratio of fast and slow component motional heterogeneity increases with an increase of functional groups up to 0.35 mmol g−1 and above this concentration slow component decreases indicating higher degree of phase mixing and stronger effect of soft segments. Polarized micrographs and the extent of ordering from WAXD measurements reveal the changes of phase morphology with the carboxylic groups content in a similar way as shown from the motional behaviour of spin label on the segmental level. The degree of crystallinity and the separation of spherulitic rings are decreasing above a certain concentration of functional groups. The effect of functional groups in PU on the hard and soft segment mixing is discussed in terms of additional noncovalent interactions and chain structure which at critical level of interactions lead to a formation of more open hard segment structure accessible to interaction with the soft segment.  相似文献   
9.
PbTiO3 (PT) thin films and their respective sols derived from three lead sources have been studied in order to elucidate the role of the starting materials in the crystallization of the products. EXAFS analysis of sols revealed similar oligomeric Ti-units in PT precursors derived from lead oxide or lead 2-methoxyethoxide acetate and a significantly different local Ti neighborhood in those derived from lead acetate. Structural details of the perovskite phase in the thin films follow the same pattern of similarity.  相似文献   
10.
The structure of Mn0.5Zn0.5Fe2O4 spinel ferrite nanoparticles is studied as a function of their size and the experimental conditions of their synthesis using X-ray absorption spectroscopy. The nanoparticles of different sizes down to approximately 2 nm and with a narrow size distribution were synthesized using co-precipitation in reverse microemulsions. Simultaneous refinement of the X-ray absorption fine structure (EXAFS) of three constituting metals shows a migration of Mn and Zn ions to the octahedral site of the spinel lattice compensated by the corresponding migration of the Fe ions. To a smaller extent, Mn ions switch the occupation site already in bulk and in larger nanoparticles, while a sporadic migration of Zn is detected only in the nanoparticles with sizes below approximately 5 nm. X-ray absorption near edge structure (XANES) reveals considerable variations in the position of the Mn K edge, suggesting the average Mn valence in the nanoparticles to be higher than 3+. Annealing at 500 °C relaxes the structure of as-synthesized nanoparticles toward the structure of the ceramic bulk standard. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号