首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   4篇
化学   6篇
物理学   1篇
  2021年   3篇
  2019年   1篇
  2018年   2篇
  2013年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
质子交换膜燃料电池(PEMFCs)电堆中阴极Pt基催化剂的高用量造成其成本居高不下,成为阻碍燃料电池汽车商业化推进的重要原因,因此开发低Pt、高活性的Pt基催化剂势在必行.Pt合金催化剂能够有效地降低Pt用量,并通过对合金颗粒的元素比例、晶面、粒径等实行精确调控,显著提升氧还原(ORR)催化活性.然而,目前常用的制备方法由于原料与制备成本高昂、过程复杂大都难以适应规模化生产需求.电化学方法通过控制施加的电流或电位控制晶体生长.在水体系中该方法已得到验证,但由于Pt化合物的热力学标准电极电位与过渡金属元素之间相差较大,且对于过渡金属来说,电负性大多小于铂,因此还原电位通常负于析氢电位,使得二者难以实现共沉积.有机体系中电位窗口比水体系大得多,Pt与电位较负的过渡金属可实现共沉积,采用小分子有机溶剂也可避免溶剂清洗问题,具有应用潜力.本文提出了一种简单的一步电沉积方法,选择易溶于水的N,N-二甲基甲酰胺(DMF)作为溶剂,将碳载体滴涂到玻碳电极上作为工作电极,通过电化学方法直接将Pt-Ni合金沉积到碳载体上,并利用物化表征与密度泛函理论(DFT)理论计算来探究共沉积机理.透射电镜表征结果表明,在不同的沉积电位下均可得到分散均匀、粒径适当的催化剂;且随着电位值降低,催化剂颗粒分散得更均匀,颗粒粒径不断减小.元素分布和晶面结果表明,铂镍元素均匀分布于颗粒中.所有样品均表现出优异的ORR性能,最高的面积比活性达到商业催化剂的6.85倍.将材料表征、电化学表征与DFT计算结合,建立起了铂镍合金生长过程的模型,并发现了有机体系中独特的成核-生长机理.将体系中的DMF换成超纯水,用同样的方法进行沉积,得到的催化剂颗粒团聚严重,说明DMF的使用能够避免颗粒团聚.在单独铂的体系中沉积发现,负载量极小,表明体系中镍前驱体的添加对于催化剂的沉积过程起到重要作用.电化学表征结果表明,在所选用的DMF有机体系中,镍的还原电位与铂的十分接近,但还原动力学更慢,趋向于先形成吸附原子后快速还原.由此可以推测,在二者合金的形成过程中,镍在碳载体表面的缓慢还原而形成的吸附原子能够成为铂还原的活性位点,从而降低了铂还原成核所需的能量,使得载体上的成核位点大大增加,这与DFT模拟结果一致.DFT建立了碳上镍的位点和铂的位点,分别在上面进行铂的还原,发现镍位点上比铂位点上更容易实现铂沉积.本文提出了铂镍共沉积的机理:在过电位(即还原能量)下,铂的还原动力学较镍稍快,于是铂先还原形成晶核,但难以达到生长的临界半径,于是单独铂体系中的沉积负载量很少.载体上还原的镍为铂还原提供了大量的活性位点,促进了铂还原,并与镍共沉积.Pt-Ni表面则进一步促进了铂的沉积和颗粒的生长.综上,本文提出了一种用于制备铂合金催化剂的有机电沉积体系,实现了单分散的碳载铂镍合金催化剂的一步制备.随后,本文将材料表征、电化学表征与DFT计算相结合,建立起了有机体系中铂镍合金成核-生长过程的机理模型.  相似文献   
2.
纳米材料的结构和化学成分对其催化性能的显著影响已经得到验证. 因此,本文通过一种简易的蚀刻方法,合成出具有均匀合金结构且尺寸和形貌均一的Pt-Cu纳米枝晶(NDs)作为高效氧还原(ORR)催化剂. 其树枝状形貌的形成得益于由Br-/O2氧化蚀刻剂引起的蚀刻效应. 通过改变Pt/Cu前驱体的比例可以容易地调节Pt-Cu NDs的Pt/Cu原子比,而不会使其树枝状形貌发生改变. 活性最高的碳载Pt1Cu1 NDs(Pt1Cu1 NDs/C)的面积比活性为1.17 mA·cm-2@0.9V(vs. RHE),约为商业Pt/C的5.32倍. 此外,Pt1Cu1 NDs/C还具有卓越的电化学耐久性,即使在经过加速衰减实验的12000个电势循环后仍保持其优异的ORR催化活性. Pt1Cu1 NDs/C优异的ORR催化活性和电化学耐久性得益于由其合金结构和枝晶形貌产生的电子效应和结构效应.  相似文献   
3.
4.
质子交换膜燃料电池(PEMFCs)电堆中阴极Pt基催化剂的高用量造成其成本居高不下,成为阻碍燃料电池汽车商业化推进的重要原因,因此开发低Pt、高活性的Pt基催化剂势在必行.Pt合金催化剂能够有效地降低Pt用量,并通过对合金颗粒的元素比例、晶面、粒径等实行精确调控,显著提升氧还原(ORR)催化活性.然而,目前常用的制备方法由于原料与制备成本高昂、过程复杂大都难以适应规模化生产需求.电化学方法通过控制施加的电流或电位控制晶体生长.在水体系中该方法已得到验证,但由于Pt化合物的热力学标准电极电位与过渡金属元素之间相差较大,且对于过渡金属来说,电负性大多小于铂,因此还原电位通常负于析氢电位,使得二者难以实现共沉积.有机体系中电位窗口比水体系大得多,Pt与电位较负的过渡金属可实现共沉积,采用小分子有机溶剂也可避免溶剂清洗问题,具有应用潜力.本文提出了一种简单的一步电沉积方法,选择易溶于水的N,N-二甲基甲酰胺(DMF)作为溶剂,将碳载体滴涂到玻碳电极上作为工作电极,通过电化学方法直接将Pt-Ni合金沉积到碳载体上,并利用物化表征与密度泛函理论(DFT)理论计算来探究共沉积机理.透射电镜表征结果表明,在不同的沉积电位下均可得到分散均匀、粒径适当的催化剂;且随着电位值降低,催化剂颗粒分散得更均匀,颗粒粒径不断减小.元素分布和晶面结果表明,铂镍元素均匀分布于颗粒中.所有样品均表现出优异的ORR性能,最高的面积比活性达到商业催化剂的6.85倍.将材料表征、电化学表征与DFT计算结合,建立起了铂镍合金生长过程的模型,并发现了有机体系中独特的成核-生长机理.将体系中的DMF换成超纯水,用同样的方法进行沉积,得到的催化剂颗粒团聚严重,说明DMF的使用能够避免颗粒团聚.在单独铂的体系中沉积发现,负载量极小,表明体系中镍前驱体的添加对于催化剂的沉积过程起到重要作用.电化学表征结果表明,在所选用的DMF有机体系中,镍的还原电位与铂的十分接近,但还原动力学更慢,趋向于先形成吸附原子后快速还原.由此可以推测,在二者合金的形成过程中,镍在碳载体表面的缓慢还原而形成的吸附原子能够成为铂还原的活性位点,从而降低了铂还原成核所需的能量,使得载体上的成核位点大大增加,这与DFT模拟结果一致.DFT建立了碳上镍的位点和铂的位点,分别在上面进行铂的还原,发现镍位点上比铂位点上更容易实现铂沉积.本文提出了铂镍共沉积的机理:在过电位(即还原能量)下,铂的还原动力学较镍稍快,于是铂先还原形成晶核,但难以达到生长的临界半径,于是单独铂体系中的沉积负载量很少.载体上还原的镍为铂还原提供了大量的活性位点,促进了铂还原,并与镍共沉积.Pt-Ni表面则进一步促进了铂的沉积和颗粒的生长.综上,本文提出了一种用于制备铂合金催化剂的有机电沉积体系,实现了单分散的碳载铂镍合金催化剂的一步制备.随后,本文将材料表征、电化学表征与DFT计算相结合,建立起了有机体系中铂镍合金成核-生长过程的机理模型.  相似文献   
5.
血红素作为一种天然金属大环化合物常被用于制备非贵金属电催化剂用于燃料电池阴极的氧还原反应,但是其电催化活性仍有待提升。本文以氯化钠作为模板设计合成了一种中空的铁基非贵金属电催化剂Hemin-HD(Hemin hollow derivative),在碱性介质中该催化剂可以高效地催化氧还原反应。结合透射电镜、X射线衍射、比表面积分析和X射线光电子能谱等物理化学表征可知,与无模板制备的电催化剂Hemin-D(Hemin derivative)相比,Hemin-HD电催化剂比表面积提升了6.5倍,孔容积增加了3.8倍。这主要是由于该电催化剂中空结构的设计使得催化活性位可以同时分散在内表面和外表面,比表面积的增加加强了活性位点的暴露,提高了活性位点密度。此外,Hemin-HD电催化剂中的孔道结构可以有效地改善氧气传质速率,加强活性位点与反应物之间的接触,从而有效提高催化剂的氧还原活性。  相似文献   
6.
对小功率GaN基白光LED的电流拥挤效应进行了研究,发现串联灯组(8只为一组)在经过22 V电压冲击后出现漏电失效现象。通过Pspice软件对串联LED灯组进行模拟,发现与其他样品相比,受损样品承受了更大的电压和功率;对器件加-2 V偏压,利用光发射(EMMI)显微镜对芯片表面不同量级漏电流进行定位分析比较,结果表明漏电流集中在p型扩展电极端点附近。分析认为,电压冲击的破坏路径穿过了LED的量子阱结构,而电流的不均匀分布造成了 p型扩展电极附近的电流拥挤,加剧了pn结的损伤程度,提高电流扩展的均匀性可以有效提高LED的可靠性。最后还对在正向电流-电压区域出现微分负阻特性的器件进行了失效分析。  相似文献   
7.
纳米材料的结构和化学成分对其催化性能的显著影响已经得到验证.因此,本文通过一种简易的蚀刻方法,合成出具有均匀合金结构且尺寸和形貌均一的Pt-Cu纳米枝晶(NDs)作为高效氧还原(ORR)催化剂.其树枝状形貌的形成得益于由Br-/O2氧化蚀刻剂引起的蚀刻效应.通过改变Pt/Cu前驱体的比例可以容易地调节Pt-Cu NDs的Pt/Cu原子比,而不会使其树枝状形貌发生改变.活性最高的碳载Pt1Cu1NDs(Pt1Cu1NDs/C)的面积比活性为1.17 mA·cm-2@0.9V(vs.RHE),约为商业Pt/C的5.32倍.此外,Pt1Cu1NDs/C还具有卓越的电化学耐久性,即使在经过加速衰减实验的12000个电势循环后仍保持其优异的ORR催化活性.Pt1Cu1NDs/C优异的ORR催化活性和电化学耐久性得益于由其合金结构和枝晶形貌产生的电子效应和结构效应.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号