首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
物理学   2篇
  2022年   1篇
  2021年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
Mode-interaction plays an important role in the dark soliton generation in the microcavity. It is beneficial to the excitation of dark solitons, but also facilitates a variety of dark soliton states. Based on the non-normalized Lugiato-Lefever equation, the evolution of dark soliton in the microcavity with mode-interaction is investigated. By means of mode-interaction, the initial continuous wave(CW) field evolves into a dark soliton gradually, and the spectrum expands from a single mode to a broadband comb. After changing the mode-interaction parameters, the original modes which result in dual circular dark solitons inside the microcavity, are separated from the resonant mode by 2 free spectral ranges(FSR). When the initial field is another feasible pattern of weak white Gaussian noise, the large frequency detuning leads to the amplification of the optical power in the microcavity, and the mode-interaction becomes stronger. Then, multiple dark solitons, which correspond to the spectra with multi-FSR, can be excited by selecting appropriate mode-interaction parameters. In addition, by turning the mode-interaction parameters, the dark soliton number can be regulated, and the comb tooth interval in the spectrum also changes accordingly. Theoretical analysis results are significant for studying the dark soliton in the microcavity with mode-interaction.  相似文献   
2.
Bo-Shen Zhou 《中国物理 B》2022,31(5):57804-057804
The 52% energy of the solar radiation is contributed by near-infrared radiation (NIR, 780-2500 nm). Therefore, the material design for the energy-saving smart window, which can effectively shield NIR and has acceptable visible transmittance, is vital to save the energy consumed on the temperature control system. It is important to find a non-toxic stable material with excellent NIR-shielding ability and acceptable visible transmittance. The systematic first-principles study on LixSnyWO3 (x=0, 0.33, 0.66, and y=0, 0.33) exhibits that the chemical stability is a positive correlation with the doping concentration. After doping, the Fermi-energy upshifts into the conduction band, and the material shows metal-like characteristics. Therefore, these structures LixSnyWO3 (except the structure with x=0.33 and y=0) show pronounced improvement of NIR shielding ability. Our results indicate that when x=0 and y=0.33, the material exhibits the strongest NIR-shielding ability, satisfying chemical stability, wide NIR-shielding range (780-2500 nm), and acceptable visible transmittance. This work provides a good choice for experimental study on NIR shielding material for the energy-saving window.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号