首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   7篇
物理学   7篇
  2015年   3篇
  2013年   2篇
  2011年   2篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
为实现基于微透镜阵列的高功率半导体激光器堆栈光束整形,对带有快轴准直透镜的高功率半导体激光器堆栈慢轴光束准直技术进行研究。在慢轴光束准直理论分析基础上,着重研究了慢轴填充因子对其光束准直的影响,并对不同填充因子的半导体激光器慢轴光束准直方案进行了分析。针对实际使用的填充因子0.5的高功率半导体激光器堆栈采用以Bar条为单元进行整体准直设计,并采用基于空间扫描法的发散角测试装置对慢轴准直后剩余发散角进行测试,实现准直后剩余发散角半角2.12°,实验表明该准直方法的有效性。  相似文献   
2.
为了减小微透镜阵列误差对匀化光斑的影响,深入研究微透镜阵列光束匀化系统中微透镜阵列相对位置误差对光束匀化性能的影响,设计了一种微透镜阵列光束匀化系统。依据相对位置误差类型的不同,将双列微透镜阵列间六个自由度变化导致的误差分为距离误差、偏移误差以及转动误差进行分析,并对每种误差对光束匀化性能的影响进行了研究。采用6板条半导体激光器堆栈对上述匀化系统进行实验验证,实现了均匀性为90.75%的光斑,并对系统影响光斑性能的原因进行了分析。  相似文献   
3.
为实现高功率激光二极管堆栈光束的匀化与整形,提出基于双柱透镜慢轴准直的匀化系统。利用双柱透镜实现对高填充因子激光二极管慢轴方向光束发散角度的压缩,降低成像型多孔径光束积分器中微透镜的数值孔径,减小匀化系统体积。通过三个限定条件确定了双柱透镜参数取值范围,并通过像差分析对双柱透镜进行了优化,实现慢轴方向光束剩余发散角度1.74。结合成像型多孔径光束积分器,设计了激光二极管堆栈的匀化系统,并进行了实验测试。实验结果表明,在中心光斑尺寸约为6 mm6 mm范围内,光斑不均匀性为8.11%。  相似文献   
4.
 基于Zemax软件下的非序列模式(non-sequential mode)光线追迹法,分别模拟复合结构板条介质抽运端面和掺杂介质区工作端面上的光强度分布。由追迹结果可知,经过整形,在抽运面强度分布均匀的抽运光束经过非掺杂介质区传播到掺杂介质工作端面后光束分布均匀性大大降低。研究表明复合结构板条介质中非掺杂介质区影响了抽运光束,即抽运光在非掺杂介质区传播过程中发生全内反射,导致部分光束在实际工作端面的部分区域发生叠加,从而致使实际工作端面抽运光束分布不均匀。最后,依据平面波导匀化理论,从改变非掺杂介质区长度和入射光束发散角大小角度出发,提出改善抽运光束均匀性的思路,并进行了模拟验证。  相似文献   
5.
为了实现半导体激光器快轴准直柱透镜加工公差的快速、准确制定,在快轴光束准直理论分析的基础上,采用几何光学的方法建立了多参数加工公差理论模型。该模型以各个结构参数的极限偏差值作为公差初始值,以实际的加工精度作为边界条件,并根据具体的准直设计要求进行优化,实现各个参数公差的合理、快速分配。针对常见的TO-MOUNT型号中的一款快轴发散角为36°的半导体激光器设计了快轴准直柱透镜,利用该理论模型实现快轴准直柱透镜加工公差的快速制定,引入该公差后的ZEMAX仿真结果符合准直设计要求,且仿真的出射光束发散角与理论计算结果仅有1.1%的误差。  相似文献   
6.
 为了得到结构紧凑的高功率、高重复频率固体激光器,设计了“U”型光学谐振腔,并利用LAS-CAD软件分析了激光晶体的热效应和激光输出特性。根据仿真结果进行了具体实验,最终得到了腔长400 mm的紧凑型固体激光器。在重复频率为100 kHz,泵浦功率为60 W时,输出功率达到21.6 W,光-光转换效率为36%,斜率效率为39.9%。  相似文献   
7.
体光栅光谱合成技术是获得高功率激光输出的一种有效途径,体光栅衍射旁瓣是影响合成光束数目的主要因素。采用了Hamming切趾技术对体光栅旁瓣进行抑制,建立了Hamming切趾体光栅的折射率分布模型,分析了Hamming切趾体光栅的衍射特性,给出了Hamming切趾体光栅光谱合成效率公式,分析了切趾光栅对光谱合成效率的影响。计算结果表明:体光栅切趾后有效减小了体光栅对相邻合成光束的衍射损耗,切趾后,在20 nm的带宽内,谱合成光束的数目由13束增加为20束,谱合成效率达75.3%,光谱合成功率提高为切趾前的1.5倍。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号