首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   6篇
物理学   6篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2018年   2篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Shou-Kuan Zhao 《中国物理 B》2022,31(3):30307-030307
The Loschmidt echo is a useful diagnostic for the perfection of quantum time-reversal process and the sensitivity of quantum evolution to small perturbations. The main challenge for measuring the Loschmidt echo is the time reversal of a quantum evolution. In this work, we demonstrate the measurement of the Loschmidt echo in a superconducting 10-qubit system using Floquet engineering and discuss the imperfection of an initial Bell-state recovery arising from the next-nearest-neighbor (NNN) coupling present in the qubit device. Our results show that the Loschmidt echo is very sensitive to small perturbations during quantum-state evolution, in contrast to the quantities like qubit population that is often considered in the time-reversal experiment. These properties may be employed for the investigation of multiqubit system concerning many-body decoherence and entanglement, etc., especially when devices with reduced or vanishing NNN coupling are used.  相似文献   
2.
We study the effect of longitudinally applied field modulation on a two-level system using superconducting quantum circuits. The presence of the modulation results in additional transitions and changes the magnitude of the resonance peak in the energy spectrum of the qubit. In particular, when the amplitude λ_z and the frequency ω_l of the modulation field meet certain conditions, the resonance peak of the qubit disappears. Using this effect, we further demonstrate that the longitudinal field modulation of the Xmon qubit coupled to a one-dimensional transmission line could be used to dynamically control the transmission of single-photon level coherent resonance microwave.  相似文献   
3.
Pengtao Song 《中国物理 B》2021,30(12):128502-128502
Josephson parameter amplifier (JPA) is a microwave signal amplifier device with near-quantum-limit-noise performance. It has important applications in scientific research fields such as quantum computing and dark matter detection. This work reports the fabrication and characterization of broadband JPA devices and their applications in multi-qubit readout and squeezing of vacuum state. We use a process in which transmission lines and electrodes are made of niobium thin film and aluminum Josephson junctions are made by Dolan bridge technique. We believe this process is more convenient than the process we used previously. The whole production process adopts electron beam lithography technology to ensure high structural resolution. The test result shows that the gain value of the manufactured JPA can exceed 15 dB, and the amplification bandwidth is about 400 MHz. The noise temperature is about 400 mK at the working frequency of 6.2 GHz. The devices have been successfully used in experiments involving superconducting multi-qubit quantum processors. Furthermore, the device is applied to squeeze vacuum fluctuations and a squeezing level of 1.635 dB is achieved.  相似文献   
4.
Xue-Yi Guo 《中国物理 B》2023,32(1):10307-010307
Quantum computers promise to solve finite-temperature properties of quantum many-body systems, which is generally challenging for classical computers due to high computational complexities. Here, we report experimental preparations of Gibbs states and excited states of Heisenberg $XX$ and $XXZ$ models by using a 5-qubit programmable superconducting processor. In the experiments, we apply a hybrid quantum-classical algorithm to generate finite temperature states with classical probability models and variational quantum circuits. We reveal that the Hamiltonians can be fully diagonalized with optimized quantum circuits, which enable us to prepare excited states at arbitrary energy density. We demonstrate that the approach has a self-verifying feature and can estimate fundamental thermal observables with a small statistical error. Based on numerical results, we further show that the time complexity of our approach scales polynomially in the number of qubits, revealing its potential in solving large-scale problems.  相似文献   
5.
Zhan Wang 《中国物理 B》2021,30(11):110305-110305
We have developed an electronic hardware system for the control and readout of multi-superconducting qubit devices. The hardware system is based on the design ideas of good scalability, high synchronization and low latency. The system, housed inside a VPX-6U chassis, includes multiple arbitrary-waveform generator (AWG) channels, analog-digital-converter (ADC) channels as well as direct current source channels. The system can be used for the control and readout of up to twelve superconducting transmon qubits in one chassis, and control and readout of more and more qubit can be carried out by interconnecting the chassis. By using field programmable gate array (FPGA) processors, the system incorporates three features that are specifically useful for superconducting qubit research. Firstly, qubit signals can be processed using the on-board FPGA after being acquired by ADCs, significantly reducing data processing time and data amount for storage and transmission. Secondly, different output modes, such as direct output and sequential output modes, of AWG can be implemented with pre-encoded FPGA. Thirdly, with data acquisition ADCs and control AWGs jointly controlled by the same FPGA, the feedback latency can be reduced, and in our test a 178.4 ns latency time is realized. This is very useful for future quantum feedback experiments. Finally, we demonstrate the functionality of the system by applying the system to the control and readout of a 10 qubit superconducting quantum processor.  相似文献   
6.
We couple a ladder-type three-level superconducting artificial atom to a cavity. Adjusting the artificial atom to make the cavity be resonant with the two upper levels, we then probe the lower two levels of the artificial atom. When driving the cavity to a coherent state, the probe spectrum shows energy level splitting induced by the quantized electromagnetic field in the cavity. This splitting size is related to the coupling strength between the cavity and the artificial atom and, thus, is fixed after the sample is fabricated. This is in contrast to the classical Autler–Townes splitting of a three-level system in which the splitting is proportional to the driving amplitude, which can be continuously changed. Our experiment results show the difference between the classical microwave driving field and the quantum field of the cavity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号