首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   5篇
物理学   5篇
  2014年   4篇
  2013年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Novel band-stop filters with circular split-ring resonators based on the metal–insulator–metal(MIM) structure are presented, with their transmission properties of SPPs propagating through the filter simulated by the finite-difference timedomain(FDTD) method. The variation of the gap of the split ring can affect the transmission characteristics, i.e., the transmission spectrum of SPPs exhibiting a shift, which is useful for modulating the filter. Linear and nonlinear media are used in the resonator respectively. By varying the refractive index of the linear medium, the transmission properties can be changed obviously, and the effect caused by changing the incident intensity with a nonlinear medium is similar.Several resonant modes that are applicable can be enhanced by changing the position of the gap of the split ring. Thus, the transmission properties can be modulated by adjusting the size of the gap, varying the refractive index, and changing the incident intensity of the input light. These methods may play significant roles in applications of optical integrated circuits and nanostructural devices.  相似文献   
2.
Tuning the dielectric permittivity spectra of strontium titanate (SrTiO3) single crystals in an extemal optical field is investigated at room temperature by means of terahertz time-domain spectroscopy. The application of the optical field leads to an appreciable tuning of the permittivity, reaching up to 2.8%, with the dielectric loss changing about 3%. The observed behavior is interpreted in terms of soft-mode hardening due to the anharmonic character of its potential. We also find that the change of the refractive index responds linearly to the applied light power. These findings are attributed to a linear electro-optical effect of the internal space charge field of the crystal.  相似文献   
3.
在硅衬底上设计了一种单开口环谐振器,对其太赫兹频段内的透射性质进行了研究。假定通过光注入方式改变衬底硅的电导率,实现了谐振环的双谐振透射率可调。将砷化镓材料生长于该谐振环的开口处,通过光注入方式改变砷化镓材料的电导率,可以实现谐振环的双频LC共振和偶极子共振模式与单频闭合环共振模式之间的转换。这种通过光注入改变半导体材料电导率的方法,可以在不破坏原来谐振器件物理结构的前提下,实现谐振环谐振模式的可逆转换。  相似文献   
4.
A face-to-face system of double-layer three-dimensional arrays of H-shaped plasmonic crystals is proposed, and its transmission and filtering properties are investigated in the terahertz regime. Simulation results show that our design has excellent filtering properties. It has an ultra-wide bandgap and passband with steep band-edges, and the transmittance of the passband and the forbidden band are very close to I and 0, respectively. As the distance between the two face-to-face plates increases, the resonance frequency exhibits a gradual blueshift from 0.88 THz to 1.30 THz. Therefore, we can dynamically control the bandwidths of bandgap and passband by adding a piezoelectric ceramic plate between the two crystal plates. Furthermore, the dispersion relations of modes and electric field distributions are presented to analyze the generation mechanisms of bandgaps and to explain the location of bandgaps and the frequency shift phenomenon. Due to the fact that our design can provide many resonant modes, the bandwidth of the bandgaps can be greatly broadened. This paper can serve as a valuable reference for the design of terahertz functional devices and three-dimensional terahertz metamaterials.  相似文献   
5.
袁偲  徐世林  姚建铨  赵晓蕾  曹小龙  吴亮 《中国物理 B》2014,23(1):18102-018102
A face-to-face system of double-layer three-dimensional arrays of H-shaped plasmonic crystals is proposed, and its transmission and filtering properties are investigated in the terahertz regime. Simulation results show that our design has excellent filtering properties. It has an ultra-wide bandgap and passband with steep band-edges, and the transmittance of the passband and the forbidden band are very close to 1 and 0, respectively. As the distance between the two face-to-face plates increases, the resonance frequency exhibits a gradual blueshift from 0.88 THz to 1.30 THz. Therefore, we can dynamically control the bandwidths of bandgap and passband by adding a piezoelectric ceramic plate between the two crystal plates. Furthermore, the dispersion relations of modes and electric field distributions are presented to analyze the generation mechanisms of bandgaps and to explain the location of bandgaps and the frequency shift phenomenon. Due to the fact that our design can provide many resonant modes, the bandwidth of the bandgaps can be greatly broadened. This paper can serve as a valuable reference for the design of terahertz functional devices and three-dimensional terahertz metamaterials.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号