首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
物理学   11篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2013年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
天光作为一种主要的噪声,叠加在目标天体光谱之中,降低了光谱的信噪比。经过减天光处理后,若光谱中仍含有大量强度高的天光残差将不利于对目标光谱的后续分析。自动识别减天光异常恒星光谱的研究较少,目前只能通过人工检测的方法去寻找减天光异常的光谱,效率较低。首先对影响减天光结果的因素进行分析,找出减天光异常光谱的特征,然后提出一种简单有效的方法能够自动识别LAMOST巡天经过Pipeline处理之后仍然存在减天光异常的恒星光谱并检测其位置。该方法先对光谱进行归一化处理,然后通过检测天光线附近是否有一定强度的类似发射线或吸收线的残留来判定该天光线位置是否出现减天光异常,最后得出光谱中所有的减天光异常的天光位置。通过对LAMOST光谱数据的实验表明,这种方法可以有效识别出减天光异常的光谱和发现不同残留强度的天光线异常位置,并且该方法简单易懂,识别效率高,可以应用于大量的减天光异常光谱的识别与检测问题。  相似文献   
2.
M矮星是银河系中最普遍的恒星,它们的运动状况能提供银河系演化的线索,视向速度(RV)是反映M矮星运动状况的重要参数之一。我国的大科学工程LAMOST巡天项目已经获得了数十万M型星光谱,测量这些恒星的视向速度需要自动、高效的程序。计算M矮星视向速度的一般方法是将观测光谱与模板光谱进行交叉相关得出。然而在实际处理过程中,由于本质上的不同或者噪声的影响,一些观测光谱和模板光谱错误匹配,从而使得这些光谱的视向速度测量产生偏差。为了减少噪声等因素的影响,对于信噪比较高、但局部有较强噪声的光谱,采用统计与经验特征相结合的方法选取光谱中的有效特征段、避开噪声污染的波段计算M型星的视向速度。利用该方法对LAMOST DR3 M型星星表中的部分实测光谱测量了视向速度,将之与APOGEE星表中的对应视向速度进行了对比。结果表明该方法有效地减少了局部噪声对视向速度的影响,提高了视向速度测量的准确率。  相似文献   
3.
大规模光谱巡天项目如LAMOST等产生了海量极具研究价值的观测数据,如何对此数量级的数据进行有效的分析是当前的一个研究热点。聚类算法是一类无监督的机器学习算法,可以在不依赖于领域知识的情况下对数据进行处理,发现其中的规律与结构。恒星光谱聚类是天文数据处理中一项非常重要的工作,主要对海量光谱巡天数据按照其物理及化学性质分类。针对LAMOST巡天中的早M型矮恒星的光谱数据,使用多种聚类算法如K-Means,Bisecting K-Means和OPTICS算法做了聚类分析,研究不同聚类算法在早M型恒星数据的表现。聚类算法在一定程度依赖于其使用的距离度量算法,同时研究了欧氏距离、曼哈顿距离、残差分布距离和上述三种聚类算法搭配下的表现。实验结果表明:(1)聚类算法可以很好地辅助分析早M型矮恒星的光谱数据,聚类产生的簇心数据和MK分类吻合得非常好。(2)三种不同聚类算法表现不尽相同,Bisecting K-Means在恒星光谱细分类方面更有优势。(3) 在聚类的同时也会产生一些数量较少的簇,从这些簇中可以发现一些稀有天体候选体,相对而言OPTICS适合用来寻找稀有天体候选体。  相似文献   
4.
M矮星的研究对于探索银河系的结构、演化以及搜寻地外生命有重要意义。获得M矮星的光谱型是一项重要的基础工作。本研究采用SLOAN DR7的M矮星样本,参考随机森林的特征重要性度量, 提取M矮星可见光波段600~900 nm之间的特征。提取的特征与现有的光谱分类程序Hammer中采用的特征进行对比增加了三个新的特征,并重新计算了模板的特征指数。对该方法测试结果表明,增加了新指数的程序光谱型分类结果准确度有很大提高,该方法已用于对LAMOST的M矮星光谱进行光谱型分类。  相似文献   
5.
聚类分析是数据挖掘中用以发现数据分布和隐含模式的一种重要算法,能简单有效地研究大样本、多参量和类别未知的光谱数据。以线指数作为光谱数据的特征值能够在尽可能多的保留光谱物理特征的同时,有效解决高维光谱数据聚类分析中运算复杂度较高的问题。本文提出了基于线指数特征的海量恒星光谱数据聚类分析的方法,提取恒星光谱中的Lick线指数作为海量巡天光谱数据的特征,使用k均值聚类算法完成对光谱数据的聚类,然后对聚类结果进行有效的分析。实验结果证明该方法能够快速有效地将具有相似物理特征的恒星光谱数据聚集到一起,该方法可以应用到巡天数据的研究中。  相似文献   
6.
主要研究了一种新的基于ELM算法的中低分辨光谱的恒星Mg元素丰度估计方法。大科学工程郭守敬望远镜(LAMOST)为我们提供了海量的中低分辨率的光谱,确定这些光谱的Mg元素丰度将有助于我们深入了解银河系的形成历史和演化过程。目前从中低分辨率光谱中确定Mg元素丰度的方法主要是模板匹配法,但该方法算法复杂,优化参数较为困难且对噪声敏感,因此有必要研究新的方法。实验结果显示,ELM算法对MILES光谱的Mg丰度的估计的精度为0.009 9(0.15)dex,而对信噪比大于50的LAMOST光谱的精度为0.002 7(0.11)dex。通过与其他算法进行对比,证实ELM算法是一种能精确估计中低分辨率光谱的Mg元素丰度的算法,能够应用于LAMOST后期的光谱数据中。  相似文献   
7.
恒星光谱分类是天文数据处理中一项非常重要的工作,主要对海量光谱巡天数据按照其物理性质进行分类。利用残差分布度量的方法对LAMOST巡天中观测到的 M矮星光谱进行细分类研究。残差分布度量是一种光谱间的距离度量方法,计算光谱之间的距离时,先将两条光谱进行归一化处理,之后计算对应波长采样点处的残差,最终以残差分布的标准差作为光谱之间的距离。使用LAMOST DR2中释放的M矮星光谱进行细分类实验。实验结果表明,残差分布度量方法能比较准确地对M矮星光谱数据进行细分类。还研究了信噪比、离群点以及残差标准化系数等因素对分类结果的影响。  相似文献   
8.
在赫罗图中,M巨星位于红巨星的顶端,是由类太阳的主序星逐渐演化而成的最明亮的一类恒星。M巨星的研究对于理解银河系,特别是银河系晕的性质至关重要。中低分辨率的M巨星光谱,常因为特征不显著、噪声影响等因素而与M矮星的光谱混在一起,不易区分。现有研究一般利用CaH2+CaH3 vs. TiO5分子谱指数初步筛选M巨星光谱候选体,再通过人眼检查确认。但这种方法仅利用了三个巨星相关的分子带指数,没有利用识别M巨星的其他光谱特征,可能会由于噪声对指数的污染而导致分类错误。而且,人眼检查数量众多的光谱不仅耗时而且检查质量依赖于人的经验,可靠性无法得到保证。LAMOST望远镜自2011年开始先导巡天到2017年6月,已经发布了900多万天体的光谱,最新释放的光谱数据DR5包含了52万的M型星光谱数据,需要采用自动、准确、有效的方法来区分其中不同光度级的M子样本。本研究利用集成树模型分类M巨星和M矮星光谱,分别采用随机森林、GBDT、XGBoost和LightGBM算法,构建区分M巨星和M矮星的光度分类器。四种分类器的测试准确率分别达到97.23%,98%,98.05%和98.32%。实验表明LightGBM模型比其他三种集成树模型准确率更高,训练时间更少,分类效率更高。对分类器模型获取到的重要特征分析的结果表明,集成树算法有效提取并表达了用于区分M巨星和M矮星的结构性特征,模型提取到的重要特征不仅包括原子线或分子带吸收的波长位置,还包含了它们相邻的伪连续谱,这与传统上计算指数所需要特征波长和伪连续谱是一致的。相比于传统M巨星和M矮星分类方法,集成树模型能够采用光谱中的多个重要特征组合进行分类,避免仅依赖某一种特征易受噪声影响而得出错误的分类结果。研究结果表明集成树算法在巨星识别过程中具有显著优势,完全可以替代传统上只利用CaH和TiO指数的巨星光谱判别方法。基于集成树模型对M型星光谱的分类研究,为LAMOST高效、准确地处理海量天体光谱提供了有效的方法。随着LAMOST巡天项目不断开展,积累的M巨星和M矮星样本将为研究银河系的结构和演化提供重要的数据基础。  相似文献   
9.
特殊恒星是金属丰度异常的恒星,其中包含的信息对于研究宇宙起源、太阳系的演变以及生命的演化都有着重要的意义。因此,特殊恒星的搜寻是国内外巡天项目中的重要目标。恒星光谱中包含着恒星的化学成分、物理性质以及运动状态等丰富的信息,它是开展恒星研究的重要依据。恒星的识别、分类以及特殊恒星的发现主要依据的是恒星光谱数据。随着LAMOST和SDSS等国内外大规模数字巡天项目的深入展开,恒星光谱的数据量达到了前所未有的高度,如此大的数据量为特殊恒星的发现提供了强有力的支撑。因此如何利用这些数据快速准确地发现特殊、稀少甚至于未知类型的恒星光谱是天文学研究的重要问题。数据挖掘是结合模式识别、机器学习、统计分析及相关专家背景知识,从数据中提取出隐含的过去未知的有价值的潜在信息的技术,其在处理大数据方面有着天然的优势,越来越多的数据挖掘方法被应用到巡天数据处理及分析之中。目前针对特殊恒星搜寻的数据挖掘算法主要包含随机森林、聚类分析以及异常值检测等,但随着巡天深度的拓展,观测的目标越来越暗,进而观测光谱的信噪比也随之变低。低信噪比光谱中存在着大量的无用信息,直接利用相关算法对其进行分析处理得到的结果往往存在很大的偏差。因此,如何从大量低信噪比恒星光谱巡天数据中有效地搜寻出特殊的恒星光谱,是当前面临的一个重要问题。由于低信噪比恒星光谱本身的特点,对于从中搜寻特殊恒星光谱的工作开展较少。为了解决此问题,在仔细研究光谱数据处理方法的基础上,针对低信噪比巡天数据中特殊恒星光谱的搜寻,提出了一种以主成分分析(PCA)和基于密度峰值聚类为基础的方法。该方法首先选取O,B,A,F,G,K和M各种类型的高信噪比恒星光谱,进行波长统一和流量插值后,利用主成分分析得到特征光谱;然后利用方差贡献率最大的前几个特征光谱对低信噪比的恒星光谱进行重构得到高信噪比的光谱;最后利用重构之后的高信噪比光谱进行聚类,聚类分析中得到的离群数据即为所要搜寻的特殊恒星光谱。在聚类时,考虑到恒星光谱数据本身的特点,采用了一种基于密度峰值的聚类方法来进行聚类及离群点的挖掘。实验表明,该方法能够在低信噪比的恒星光谱巡天数据中准确地搜寻出数量相对较少的特殊恒星。同时,也可应用于诸如LAMOST、SDSS等各种银河系巡天的光谱数据分析与挖掘中。  相似文献   
10.
大规模光谱巡天将产生海量的光谱数据,为搜寻一些奇异甚至于未知类型的光谱提供了机会,对这些特殊天体的研究有助于揭示宇宙的演变规律和生命起源,巡天数据的离群数据挖掘有助于这些特殊的光谱的发现。利用线指数对光谱数据进行降维能够在尽可能多的保留光谱物理特征的同时,有效解决高维光谱数据聚类分析中运算复杂度较高的问题。提出了基于线指数特征的海量恒星光谱离群数据挖掘及分析的方法,以恒星光谱的Lick线指数作为光谱数据的特征,利用聚类搜寻离群数据的方法在海量光谱巡天数据搜寻离群数据,以此为基础并给出线指数特征空间内离群光谱数据的分析方法。实验结果证明:(1)以线指数作为光谱的特征值能快速的完成对高维光谱数据的离群数据挖掘,可以解决高维光谱数据运算复杂度高的问题;(2)该方法是在聚类结果上进行的离群数据挖掘,能够有效的挖掘出数量较少的发射线恒星、晚M型恒星、极贫金属星、缺失数据光谱等数据;(3)线指数特征空间的离群数据挖掘可以得到线指数特征空间内特殊恒星的发现规则。本文所提出的基于线指数特征的离群数据挖掘及分析方法可以应用到巡天数据的相关研究中。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号