首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
物理学   2篇
  2023年   1篇
  2022年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
激光驱动惯性约束聚变(ICF)研究是当前国际前沿科学中一个具有挑战性的研究领域,它以高能激光作为驱动源,在极短的时间内将大量能量注入靶丸中使聚变材料达到高温高密度的状态从而在靶丸中心形成热斑并引燃整个燃料层,最终实现可控核聚变。由于内爆热斑直径为50~100 μm,其持续时间为100~200 ps,离子温度达到5 keV,压力可达4.0×1016 Pa。因此,发展极端瞬态条件下的诊断技术具有重要意义。介绍了两种基于压缩感知技术的诊断方法,第一种是基于数字微镜阵列(DMD)进行编码的反射式可见光压缩感知技术,这种技术将现有的一维任意反射面速度干涉仪(VISAR)与压缩超快成像(CUP)系统相结合,有望实现一种全新的具有高时间分辨的二维VISAR诊断技术,将诊断维度从一维扩展至二维,同时它克服了现有的二维VISAR单幅成像的缺点,有望实现对内爆压缩过程流体力学不稳定性演化过程的连续诊断。由于基于DMD进行编码的反射式可见光压缩感知技术只能用于可见光波段,无法用于紫外与X光波段,为此还发展了一种透射式压缩感知技术。这种透射式压缩感知技术采用一种新颖的透射式元件实现对待测信号的编码,可以实现对紫外和X光波段信号的二维超快探测,有望实现对内爆热斑超快时空演化过程进行精密诊断。此外,针对单通道CUP技术的高时间分辨的优势和低空间分辨的不足,还提出了多通道编码、分别扫描、解码、再合成的全新的高时空分辨诊断系统基本思路,有望实现高时间分辨的同时,实现高空间分辨的二维新型诊断技术。  相似文献   
2.
针对从基于压缩超快成像(Compressed Ultrafast Photography,CUP)的任意反射面速度干涉仪(Velocity Interferometer System for Any Reflector,VISAR)中获得的压缩图像中重构出冲击波二维条纹图像的问题,提出一种基于卡尔曼滤波的双约束图像重构算法。该算法首先基于条纹图像具有的稀疏性和平滑性,将问题转化为基于小波与全变分双先验约束的优化问题,然后,考虑到实际成像的噪声问题,采用加权卡尔曼滤波对图像已有信息进行预测和调整,最后将卡尔曼滤波引入二步迭代阈值算法的迭代过程中,进而求解该双约束优化问题,实现压缩图像的精确重构。在大噪声仿真实验中,该算法重构图像的峰值信噪比和结构相似度分别提高了4.8 dB和14.81%,显著提高了图像重构质量。在实际实验中,该算法重构出了清晰的冲击波条纹图像,且将冲击波速度最大相对误差降低了9.57%和平均相对误差降低了2.2%,验证了该算法的可行性。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号