首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
物理学   3篇
  2014年   1篇
  2013年   2篇
排序方式: 共有3条查询结果,搜索用时 136 毫秒
1
1.
We propose a configuration of a wavelength division multiplexing (WDM)-visible light communication (VLC) system using orthogonal frequency division multiplexing (OFDM) modulation and an adaptive Nyquist windowing of the OFDM signal in the receiver. Based on this configuration, we demonstrate a 750-Mb/s WDM-VLC transmission based on RGB light-emitting diode (LED) with a distance of 70 cm. The measured bit error rate (BER) for all channels are under the pre-forwaxd error correction limit of 3,8 × 10-3. The BER performances of all the channels of the proposed WDM-VLC system show considerable improvement compared with those of the system without Nvauist windowing.  相似文献   
2.
3.
We propose and experimentally demonstrate a novel scheme to realize polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) signal transmission over fiber, wireless and fiber at Wband (75-110 GHz). The generation of polarization multiplexing millimeter-wave (mm-wave) wireless signal is based on the photonic technique. After 20-km fiber transmission, polarization diversity and heterodyne beating are implemented to convert the polarization components of the polarization-multiplexing signals from the optical baseband to W-band so that up to 16 Gb/s mm-wave signals can be delivered over 2-m 2~2 multiple-input multiple-output (MIMO) wireless link. At the receiver base station (BS), polarization combination reconstructs the PDM-QPSK signal which is then launched into another 20-km fiber. In the experiment, coherent detection is introduced to improve receiver sensitivity and constant modulus algorithm (CMA) is applied for polarization de-multiplexing. The bit-error-ratio (BER) for 16-Gb/s PDM- QPSK signal delivery is below the forward-error-correction (FEC) threshold of 3.8× 10-3 with the optical signal-to-noise ratio (OSNR) above 11.8 dB.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号