首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1025篇
  免费   69篇
  国内免费   66篇
化学   813篇
力学   23篇
综合类   2篇
数学   118篇
物理学   204篇
  2024年   13篇
  2023年   21篇
  2022年   57篇
  2021年   38篇
  2020年   17篇
  2019年   14篇
  2018年   24篇
  2017年   12篇
  2016年   11篇
  2015年   29篇
  2014年   42篇
  2013年   25篇
  2012年   41篇
  2011年   53篇
  2010年   54篇
  2009年   48篇
  2008年   76篇
  2007年   96篇
  2006年   92篇
  2005年   59篇
  2004年   32篇
  2003年   24篇
  2002年   41篇
  2001年   35篇
  2000年   54篇
  1999年   50篇
  1998年   45篇
  1997年   10篇
  1996年   7篇
  1995年   8篇
  1994年   2篇
  1993年   3篇
  1992年   7篇
  1991年   11篇
  1990年   7篇
  1989年   2篇
排序方式: 共有1160条查询结果,搜索用时 203 毫秒
1.
The internal solar structure predicted by the standard solar model disagrees with the helioseismic observations even by utilizing the most updated physical inputs, such as the opacity and element abundances. By increasing the Rosseland mean, the decade-old open problem of the missing opacity can be resolved. Herein, we propose that the continuum electrons in the radiative processes lose phases and coherence as matter waves, giving rise to a phenomenon of transient spatial localization. It not only enhances the continuum opacity but also increases the line widths of the bound-bound transitions. We demonstrate our theoretical formulation by investigating the opacity of solar mixtures in the interior. The Rosseland mean demonstrates an increase of 10%-26% in the range of 0.3 R⊙-0.75 R⊙. The results are compared with the recent experimental data and the existing theoretical models. Our findings provide novel clues to the open problem of the missing opacity in the solar interior and new insight on the radiative opacity in the hot dense-plasma regime.  相似文献   
2.
3.
Understanding carbon-supported Pt-catalyzed oxygen reduction reaction(ORR)from the perspective of the active sites is of fundamental and practical importance.In this study,three differently sized carbon nanotube-supported Pt nanoparticles(Pt/CNT)are prepared by both atomic layer deposition(ALD)and impregnation methods.The performances of the catalysts toward the ORR in acidic media are comparatively studied to probe the effects of the sizes of the Pt nanoparticles together with their distributions,electronic properties,and local environments.The ALD-Pt/CNT catalysts show much higher ORR activity and selectivity than the impregnation-Pt/CNT catalysts.This outstanding ORR performance is ascribed to the well-controlled Pt particle sizes and distributions,desirable Pt^04f binding energy,and the Cl-free Pt surfaces based on the electrocatalytic measurements,catalyst characterizations,and model calculations.The insights reported here could guide the rational design and fine-tuning of carbon-supported Pt catalysts for the ORR.  相似文献   
4.
CdS sensitized NiO electrode was used as the photoactive cathode in a photoelectrochemical cell for water splitting,avoiding the use of a sacrificial electron donor.Photocurrent increment under visible light irradiation was observed after integration of[Co(dmgH)2(4-Me-py)Cl](1) to the photocathode,suggesting 1 could accept electrons from photoexcited CdS for water reduction and NiO could move the holes in the valence band of CdS to anode for water oxidation.  相似文献   
5.
Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical conductivity.To mitigate these issues,free-standing N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites(Si/C-ZIF-8/CNFs)are designed and synthesized by electrospinning and carbonization methods,which present greatly enhanced electrochemical properties for lithium-ion battery anodes.This particular structure alleviates the volume variation,promotes the formation of stable solid electrolyte interphase(SEI)film,and improves the electrical conductivity.As a result,the as-obtained free-standing Si/C-ZIF-8/CNFs electrode delivers a high reversible capacity of 945.5 mAh g-1 at 0.2 A g-1 with a capacity retention of 64% for 150 cycles,and exhibits a reversible capacity of 538.6 mA h g-1 at 0.5 A g-1 over 500 cycles.Moreover,the full cell composed of a freestanding Si/C-ZIF-8/CNFs anode and commercial LiNi1/3Co1/3Mn1/3O2(NCM)cathode shows a capacity of 63.4 mA h g-1 after 100 cycles at 0.2 C,which corresponds to a capacity retention of 60%.This rational design could provide a new path for the development of high-performance Si-based anodes.  相似文献   
6.
The manipulation of the surface property of WO3 photoanode is the main breakthrough direction to improve its solar water oxidation performance both in thermodynamics and kinetics.Here,we report a WO3(002)/m-WO3 homojunction film that is composed of an upper WO3 layer with predominant(002)facet(WO3(002))and a lower WO3 layer with multi-crystal facets(m-WO3)as a photoanode for solar water oxidation.Due to the synergistic effect of WO3(002)layer and m-WO3 layer,better water oxidation activity and stability are achieved on the WO3(002)/m-WO3 homojunction film relative to the m-WO3 and WO3(002)film.Specifically,the improved water oxidation performance on the WO3(002)/m-WO3 homojunction film is attributed to the followings.In thermodynamics,the band position differences between WO3(002)layer and m-WO3 layer lead to the formation of WO3(002)/m-WO3 homojunction,which has positive function of improving their charge separation and transfer.In kinetics,the upper WO3(002)layer of the WO3(002)/m-WO3 film has superior activity in the adsorption and activation of water molecules,water oxidation on this homojunction film photoanode is inclined to follow the four-holes pathway,and the corrosion of photoanode from the H2O2 intermediate is restrained.The present work provides a new strategy to modify the WO3 photoanodes for thermodynamically and kinetically efficient water oxidation.  相似文献   
7.
Current studies of cathodes for potassium batteries(PBs) mainly focus on the intercalation-type materials.The conversion-type materials that possess much higher theoretical capacities are rarely discussed in previous literatures.In this work,carbon fluoride(CF_x) is reported as a high capacity conversion-type cathode for PBs for the first time.The material delivers a remarkable discharge capacity of>250 mAh g-1 with mid-voltage of 2.6 V at 20 mA g-1.Moreover,a highly reversible capacity of around 95 mAh g-1 is achieved at 125 mA g-1 and maintained for 900 cycles,demonstrating its excellent cycling stability.The mechanism of this highly reversible conversion reaction is further investigated by nuclear magnetic resonance spectra,X-ray diffraction,and transmission electron microscopy studies.According to the analyses,the C-F bond in the cycled material is different from that in the pristine state,which presents relatively higher reversibility.This finding offers important insights for further improving the performance of the CF_x.This work not only demonstrates the CF_x as a high performance cathode for PBs,but also paves a new avenue of exploring conversion-type cathodes for high energy density PBs.  相似文献   
8.
Laser powder bed fusion(LPBF),like many other additive manufacturing techniques,offers flexibility in design expected to become a disruption to the manufacturing industry.The current cost of LPBF process does not favor a try-anderror way of research,which makes modelling and simulation a field of superior importance in that area of engineering.In this work,various methods used to overcome challenges in modeling at different levels of approximation of LPBF process are reviewed.Recent efforts made towards a reliable and computationally effective model to simulate LPBF process using finite element(FE)codes are presented.A combination of ray-tracing technique,the solution of the radiation transfer equation and absorption measurements has been used to establish an analytical equation,which gives a more accurate approximation of laser energy deposition in powder-substrate configuration.When this new analytical energy deposition model is used in in FE simulation,with other physics carefully set,it enables us to get reliable cooling curves and melt track morphology that agree well with experimental observations.The use of more computationally effective approximation,without explicit topological changes,allows to simulate wider geometries and longer scanning time leading to many applications in real engineering world.Different applications are herein presented including:prediction of printing quality through the simulated overlapping of consecutive melt tracks,simulation of LPBF of a mixture of materials and estimation of martensite inclusion in printed steel.  相似文献   
9.
The works on the procedure of fluorescent sensors for the detection of biological analytes are extremely momentous.Among diverse analytical approaches,fluorescence is the most eye-catching due to its high sensitivity,selectivity,rapidity,robustness,ease of measurement and non-destructive approaches.Herein,we show different fluorescent probes synthesized for estimation and detection of biological analytes(H2S,SO32-/HSO3-,H2O2<...  相似文献   
10.
We successfully synthesized the first hemin-montmorillonite bio-conjugate with an amino acid residue to mimic natural peroxidase enzyme. Histamine was intercalated in montmorillonite by cation exchange, then a hemin molecule was loaded onto the histamine-montmorillonite with an adsorption capacity of 7.0 mg g-1. The hemin-histamine-montmorillonite conjugate shows high peroxidase activity as indicated by the oxidation of guaiacol, which is attributed to the activation of hemin by Fe–N complex formation between the imidazole group in histamine and the iron ion in the hemin molecule. Temperature- dependent peroxidase activity for this synthesized biomimetic material indicates that raising the reaction temperature could significantly enhance the activity of the conjugate. The biomimetic catalyst has good reusability; nearly 100% activity can be retained after three cycles. Because montmorillonite clay is widely distributed in the environment, this material offers great potential for in situ and ex situ remediation of many organic contaminants in surface/subsurface soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号