首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   7篇
物理学   7篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2010年   1篇
排序方式: 共有7条查询结果,搜索用时 93 毫秒
1
1.
The classical model of voltage-gated ion channels assumes that according to a Markov process ion channels switch among a small number of states without memory, but a bunch of experimental papers show that some ion channels exhibit significant memory effects, and this memory effects can take the form of kinetic rate constant that is fractal. Obviously the gating character of ion channels will affect generation and propagation of action potentials, furthermore, affect generation, coding and propagation of neural information. However, there is little previous research on this series of interesting issues. This paper investigates effects of fractal gating of potassium channel subunits switching from closed state to open state on neuronal behaviours. The obtained results show that fractal gating of potassium channel subunits switching from closed state to open state has important effects on neuronal behaviours, increases excitability, rest potential and spiking frequency of the neuronal membrane, and decreases threshold voltage and threshold injected current of the neuronal membrane. So fractal gating of potassium channel subunits switching from closed state to open state can improve the sensitivity of the neuronal membrane, and enlarge the encoded strength of neural information.  相似文献   
2.
Because a brain consists of tremendous neuronal networks with different neuron numbers ranging from tens to tens of thousands, we study the coherence resonance due to ion channel noises in globally coupled neuronal networks with different neuron numbers. We confirm that for all neuronal networks with different neuron numbers there exist the array enhanced coherence resonance and the optimal synaptic conductance to cause the maximal spiking coherence. Furthermoremore, the enhancement effects of coupling on spiking coherence and on optimal synaptic conductance are almost the same, regardless of the neuron numbers in the neuronal networks. Therefore for all the neuronal networks with different neuron numbers in the brain, relative weak synaptic conductance (0.1 mS/cm2) is sufficient to induce the maximal spiking coherence and the best sub-threshold signal encoding.  相似文献   
3.
正The expression of Eq. (1) in page 028702-2 of Ref. [1] is inaccurate. This correct formula should be CmdVi/dt = gNam3ihi(Vi-VNa)  相似文献   
4.
In this paper,we study spiking synchronization in three different types of Hodgkin-Huxley neuronal networks,which are the small-world,regular,and random neuronal networks.All the neurons are subjected to subthreshold stimulus and external noise.It is found that in each of all the neuronal networks there is an optimal strength of noise to induce the maximal spiking synchronization.We further demonstrate that in each of the neuronal networks there is a range of synaptic conductance to induce the effect that an optimal strength of noise maximizes the spiking synchronization.Only when the magnitude of the synaptic conductance is moderate,will the effect be considerable.However,if the synaptic conductance is small or large,the effect vanishes.As the connections between neurons increase,the synaptic conductance to maximize the effect decreases.Therefore,we show quantitatively that the noise-induced maximal synchronization in the Hodgkin-Huxley neuronal network is a general effect,regardless of the specific type of neuronal network.  相似文献   
5.
张争珍  许文俊  曾上游  林家儒 《中国物理 B》2014,23(2):28902-028902
In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general efficiency of a small-world network relative to that of the corresponding regular network is used to measure the small-world effect quantitatively. The more considerable the small-world effect, the higher the general efficiency of a network with a certain cost is. It is shown that the small-world effect increases monotonically with the increase of the vertex number. The optimal rewiring probability to induce the best small-world effect is approximately 0.02 and the optimal average connection probability decreases monotonically with the increase of the vertex number. Therefore, the optimal network structure to induce the maximal small-world effect is the structure with the large vertex number (〉 500), the small rewiring probability (≈0.02) and the small average connection probability (〈 0.1). Many previous research results support our results.  相似文献   
6.
7.
In this study, the robustness of small-world networks to three types of attack is investigated. Global efficiency is introduced as the network coefficient to measure the robustness of a small-world network. The simulation results prove that an increase in rewiring probability or average degree can enhance the robustness of the small-world network under all three types of attack. The effectiveness of simultaneously increasing both rewiring probability and average degree is also studied, and the combined increase is found to significantly improve the robustness of the small-world network.Furthermore, the combined effect of rewiring probability and average degree on network robustness is shown to be several times greater than that of rewiring probability or average degree individually. This means that small-world networks with a relatively high rewiring probability and average degree have advantages both in network communications and in good robustness to attacks. Therefore, simultaneously increasing rewiring probability and average degree is an effective method of constructing realistic networks. Consequently, the proposed method is useful to construct efficient and robust networks in a realistic scenario.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号